
Gesture2Text: A Generalizable Decoder for Word-Gesture
Keyboards in XR Through Trajectory Coarse Discretization and

Pre-training

Junxiao Shen, Khadija Khaldi, Enmin Zhou, Hemant Bhaskar Surale, and Amy Karlson

(a) Mobile Phone
WGK

(b) Mid-Air Poke
(AR) WGK

(c) Mid-Air Poke
(VR) WGK

(d) Mid-Air Pinch
(VR) WGK

(e) On-Surface
WGK

Fig. 1: We pre-trained a neural-network-based word-gesture keyboard (WGK) decoder for Gesture2Text decoding, also noted as a
neural decoder, using a novel one-hot encoded coarse discretized trajectory representation. This approach enhances generalizability
across various WGK systems illustrated above. The distribution of touch points in the second row illustrates that different WGK systems
exhibit unique data patterns due to variations in interaction modes, keyboard sizes, and user behaviors.

Abstract—Text entry with word-gesture keyboards (WGK) is emerging as a popular method and becoming a key interaction for
Extended Reality (XR). However, the diversity of interaction modes, keyboard sizes, and visual feedback in these environments
introduces divergent word-gesture trajectory data patterns, thus leading to complexity in decoding trajectories into text. Template-
matching decoding methods, such as SHARK2 [32], are commonly used for these WGK systems because they are easy to implement
and configure. However, these methods are susceptible to decoding inaccuracies for noisy trajectories. While conventional neural-
network-based decoders (neural decoders) trained on word-gesture trajectory data have been proposed to improve accuracy, they
have their own limitations: they require extensive data for training and deep-learning expertise for implementation. To address these
challenges, we propose a novel solution that combines ease of implementation with high decoding accuracy: a generalizable neural
decoder enabled by pre-training on large-scale coarsely discretized word-gesture trajectories. This approach produces a ready-to-use
WGK decoder that is generalizable across mid-air and on-surface WGK systems in augmented reality (AR) and virtual reality (VR),
which is evident by a robust average Top-4 accuracy of 90.4% on four diverse datasets. It significantly outperforms SHARK2 with a
37.2% enhancement and surpasses the conventional neural decoder by 7.4%. Moreover, the Pre-trained Neural Decoder ’s size is only
4 MB after quantization, without sacrificing accuracy, and it can operate in real-time, executing in just 97 milliseconds on Quest 3.

Index Terms—Pre-trained models, text entry, word-gesture keyboard, discretization

1 INTRODUCTION

Extensive techniques have been proposed and developed to enable fast
and accurate text entry in Extended Reality (XR) environments [15, 21,
33, 46, 60]. Among these, word-gesture keyboards (WGK) emerges as
a promising solution, achieving text entry speeds ranging from 20 to 40
words per minute (WPM) for proficient users [16, 22, 26, 35, 39, 50, 59,
62,66]. This method not only offers excellent learnability, being widely
adopted on touchscreen devices [34], but also inherently handles noisy
and ambiguous input due to the ambiguous nature of word-gesture
trajectories [32]. This is analogous to word-gesture typing on small
screens of smartwatches, which effectively addresses the ‘fat finger’
problem [19].

However, the majority of previous studies focus on the development

• Junxiao Shen is with Reality Labs Research, Meta and University of Bristol.
• Khadija Khaldi, Enmin Zhou, Hemant Bhaskar Surale and Amy Karlson are

with Reality Labs Research, Meta.

of new interaction techniques. The word-gesture decoding process,
which translates the word-gesture trajectory into text, predominantly
employs the classic SHARK2 [32] decoder. SHARK2 [32] is a template-
matching algorithm that computes the similarity of the input trajectory
with the pre-defined word-gesture templates constructed from a word
corpus and gives top-ranked predictions based on trajectory-template
similarity. The popularity of template-matching decoders stems from
their simplicity; they merely require pre-defining word-gesture tem-
plates and similarity metrics, enabling the matching algorithm to be
used in a plug-and-play fashion. However, these algorithms are not with-
out their limitations, including inability to predict out-of-vocabulary
(OOV) words and lack of decoding accuracy for noisy input trajecto-
ries [47].

Alsharif et al. [7] and Shen et al. [50] propose training a neural-
network-based decoder, or neural decoder, to decode word-gesture
trajectories into text. Shen et al. [50] explicitly compared neural de-
coders with SHARK2, suggesting that neural decoders significantly
outperform SHARK2. However, the adoption of neural decoders is
limited due to a significant drawback: they require substantial amounts

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456198

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on October 06,2024 at 19:03:59 UTC from IEEE Xplore. Restrictions apply.

of training data. We hypothesize that different WGK systems exhibit
distinct trajectory patterns, rendering a neural decoder trained on one
system non-generalizable to another. This limitation is due not only to
variations in interaction modes, but also to the different keyboard sizes
and user behaviors, as indicated by the touch point distributions of the
on-surface and mid-air WGK systems in AR and VR in Figure 1. More-
over, it requires deep expertise to develop and train a neural decoder, as
these models are more complex to build and train compared to some
classic deep-learning models which already have many open-sourced
codebases [11, 58]. We aim for a generalizable neural decoder that
combines ease of configuration and implementation with high decoding
accuracy.

To achieve this, we propose a novel trajectory representation, which
is one-hot encoded coarse discretized trajectories (see example illus-
tration in Figure 6c). This novel representation tolerates high noise
and differences in trajectories from different WGK interaction modes,
keyboard sizes, and user behaviors. Therefore, it enables pre-training a
neural decoder on datasets from one WGK system to be generalized
across other WGK systems without explicit fine-tuning. This eliminates
the need for collecting training data and complicated configuration.

More specifically, we pre-trained the decoder on a public word-
gesture trajectory dataset collected from Mobile Phone WGK [34]
combined with a dataset of synthetic word-gesture trajectories [49].
We further validated our Pre-trained Neural Decoder on four datasets:
one publicly available dataset for mid-air WGK in AR from Shen
et al. [50, 51] and three datasets collected ourselves, including mid-
air WGK in VR with two different interaction modes and on-surface
WGK (illustrated in Figure 1). Initially, we compared the Pre-trained
Neural Decoder with a conventional neural decoder from Alsharif et
al. [7] and SHARK2, demonstrating a 7.4% improvement and a 37.2%
improvement, respectively, in Top-4 accuracy. To this end, the Pre-
trained Neural Decoder could be used out of the box with an average
decoding Top-4 accuracy of 90.4%, which is adequate for large-scale
applications [47]. We also investigated fine-tuning the pre-trained
decoder, achieving a modest improvement. Additionally, we explored
its individual components, including different discretization techniques,
encoding methods and model structures. Lastly, we conducted a model
efficiency validation test by deploying the model onto Quest 3 [42]
through model quantization without sacrificing decoding accuracy [23].
The latency was approximately 97 millisecond (ms), which is adequate
for commercial use.

In conclusion, our contributions are as follows:
1. We propose a novel trajectory coarse discretization approach to
enable the pre-training of a word-gesture neural decoder that can be
generalized to on-surface and mid-air word-gesture keyboards in AR
and VR. The resulting Pre-trained Neural Decoder is fast and easy to
deploy and does not require additional data collection for training or
fine-tuning.
2. We validated the Pre-trained Neural Decoder on datasets from four
different AR/VR word-gesture keyboard systems and showed that the
Pre-trained Neural Decoder performs significantly better than conven-
tional decoders, with a Top-4 word prediction accuracy of 90.4%.
3. We tested the real-time performance of the pre-trained decoder on a
mobile VR device, Quest 3, by quantizing the model, suggesting low
latency of 97 ms and real-world applicability of the model.

2 RELATED WORK

2.1 Word-Gesture Keyboards
The word-gesture keyboard (WGK), originally developed for text entry
on personal digital assistants (PDAs), Tablet PCs, and mobile phones
using a stylus [32, 64], has become one of the dominant text entry
methods on modern touchscreen devices. Its success is attributed to
the ease of learning [31, 64, 65] and the high entry rates achievable
[31, 32, 47].

Leiva et al. [34] conducted a study to collect word-gesture typing
data from 909 users. As this study focused solely on data collection, no
statistical decoding process was implemented in the keyboard. Expert
users achieved a typing speed of 50 words per minute (WPM), while

those unfamiliar with gesture keyboards reached 40 WPM. In contrast,
Reyal et al. [47] conducted a separate study with 12 participants using
Google Keyboard (Gboard) to assess text entry speeds. In this study, the
entry rate for participants increased from 33.6 WPM in the initial block
to 39.1 WPM by the ninth block. Despite the difference in participant
numbers, with the latter study involving only 12 participants, a clear gap
in text entry rate (50 WPM vs 40 WPM) is evident between the actual
word-gesture keyboard text entry rates and the ideal rates assuming
perfect decoding. This discrepancy underscores the critical need for
the development of a more accurate decoder to enhance performance.

Given the benefits of word-gesture keyboards on mobile devices,
researchers have explored adapting this input method for use in AR and
VR environments [12, 22, 39, 49, 57, 59, 61, 62]. In these studies, the
entry rates for the most proficient participants or expert users typically
span from 20 to 40 WPM. A commonality among these methods is the
utilization of the SHARK2 decoder, chosen for its ease of configuration,
as these studies assert their novelty lies in the unique interaction modal-
ities they introduce. However, the potential for enhanced performance
through the adoption of a more advanced decoder is acknowledged,
albeit with the caveat of requiring substantial implementation efforts.
Therefore, there is a need for an advanced decoder ensuring both high
decoding accuracy and plug-and-play capability in academic and re-
search applications.

2.2 Word-Gesture Decoders

In this section, we first formally define the word-gesture decoding
problem. Then, we introduce two commonly used approaches for word-
gesture decoding: template-matching decoders and neural decoders.
Lastly, we discuss the advantages and disadvantages of the two types
of decoder, highlighting the need for an efficient joint approach.

2.2.1 Problem Formulation

When a cursor moves on a virtual keyboard, the movement is captured
as a word-gesture trajectory, denoted by g. The initial step involves
encoding this trajectory into a structured representation, E(g). One
commonly used encoding approach involves using the Cartesian coor-
dinate positions of the trajectory at sequential time intervals (illustrated
in Figure 6a), expressed as E(g) = [x1,x2, ...,xT], where T is the length
of the resampled cursor trajectory, and each xt ∈ R2 is the location of
the cursor at time t. Both the current template-matching decoder and
neural decoder primarily use this encoding approach.

Following this, word-gesture decoding is mathematically articulated
as finding w∗ = argmaxw P(w|E(g)), which essentially means deter-
mining the word w that, given the encoded trajectory E(g), has the
highest probability of being the intended input.

2.2.2 Template-Matching Decoder

Template-matching algorithm is a process that involves comparing an
input trajectory g with a set of pre-defined word-gesture templates P
to identify the best match. P =

⋃n
i=1 Pi is constructed from a lexicon

C = {w1,w2, ...,wn} where n denotes the number of unique words
in the lexicon. Each word wi in the lexicon is mapped to a word-
gesture template Pi through a specific process (ConstructTemplate). A
naive (ConstructTemplate) process is to sequentially connect the cen-
tral points of each letter within a word wi on a keyboard to generate
a simple template Pi. More specifically, for a given encoded input tra-
jectory E(g), the algorithm computes a similarity score S(E(g),Pi) (eg.
Euclidean distance) for each pre-defined template Pi. The algorithm
then selects the template Pj with the highest similarity score as the best
match for the encoded trajectory E(g): Pj = argmax

i∈{1,2,...,n}
S(E(g),Pi).

SHARK2 [32] is one of the most frequently used template-matching
decoders. The SHARK2 algorithm employs a sophisticated template-
matching technique that leverages a multi-channel architecture to en-
hance recognition accuracy for word-gestures [32]. Through these
mechanisms, SHARK2 efficiently narrows down the vast space of
potential matches by quickly discarding non-viable candidates and fo-
cusing on those most likely to be correct. This multi-channel approach,

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456198

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on October 06,2024 at 19:03:59 UTC from IEEE Xplore. Restrictions apply.

combining shape and location information with a smart pruning strat-
egy, allows SHARK2 to offer high accuracy and speed in word-gesture
decoding, even with a large vocabulary of possible inputs.

2.2.3 Neural Decoder
A neural decoder [25, 50] is represented by a function Dθ , which
maps an input y to a probability distribution over the alphabet for each
time step. This function is parameterized by weights and biases θ ,
which are learned during training. The model is trained using the
Connectionist Temporal Classification (CTC) loss [20], which aligns
the output sequence π with the target label sequence z by maximizing
the probability of z given π across all possible alignments, considering
insertions of the CTC blank label φ where necessary.

For each time step t, the model outputs a probability distribution
πt over the extended character alphabet L′

char. The extended alphabet
includes all the characters in the model’s alphabet plus a special token
for the CTC blank label, denoted as φ . If the original alphabet Lchar =
{a, . . . ,z} represents 26 lowercase English letters, then the extended
alphabet L′

char = Lchar ∪{φ} includes these letters plus the blank token.
The output πt for each time step t is a vector in the simplex ∆|L′

char|,
meaning that it represents a probability distribution across the extended
alphabet. The dimension of πt is |L′

char|, where |L′
char| is the size of the

extended alphabet. If we consider just the lowercase letters plus the
blank token, |L′

char|= 27.
The complete output of the model π for the entire swipe gesture

is a sequence of these probability distributions across all time steps,
so π = [π1,π2, . . . ,πT]. Each πt ∈ ∆|L′

char|, making the dimension of
π to be T ×|L′

char|. Figures 6b and 6d both visualize the probability
distributions π using heatmaps.

Formally, the neural decoder model can be mathematically repre-
sented as follows:

Dθ : Rm×T → (∆|L′
char|)T

where Dθ (y) = π and each πt ∈ ∆|L′
char| for t = 1, . . . ,T .

2.2.4 Comparison Between SHARK2 and Neural Decoder
• SHARK2 is Easier to Configure and Implement.

SHARK2 supports customizable (ConstructTemplate) process, thus
it enables the adaptability to different technologies. In contrast, a
neural decoder requires a large dataset for effective training, espe-
cially for novel WGK systems in AR and VR. One could theoretically
utilize existing word-gesture data from Mobile Phone WGK [34] to
adapt the data to different keyboard sizes through various transfor-
mation functions. However, as illustrated in Figure 1, the intrinsic
properties of the data may significantly differ, resulting in suboptimal
performance. Additionally, creating a neural decoder demands deep
learning expertise, and costly resources on complex training and
hyperparameter tuning processes.

• Neural Decoder has Significantly Better Decoding Accuracy.
Despite SHARK2’s ease of configuration, SHARK2 suffers from
persistent performance gaps compared to neural decoders. Shen et
al. [50] demonstrated a substantial improvement in accuracy when
employing a neural decoder, achieving a low error rate of 5.41%, as
opposed to the higher Character Error Rate (CER) of 35.34% found
with SHARK2. Character Error Rate is the percentage of characters
that were incorrectly predicted compared to the total number of pre-
dicted characters. Naturally, for efficient text entry, high prediction
accuracy from word-gesture decoders is essential.

• SHARK2 is a Word-Level Model and Neural Decoder is
Character-Level Model.
SHARK2 uses word-gesture templates from a lexicon, enabling pre-
dictions only for words within this set. Thus, SHARK2 is a word-
level model. Conversely, a neural decoder, embodying a character-
level model, predicts characters sequentially without relying on a set
of pre-defined templates. This character-level model can progres-
sively predict with each character word-gesture, offering enhanced
flexibility and immediacy in text entry.

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

Fig. 2: The discretization process converts a continuous word-gesture
trajectory into discrete ‘pixels’ via a mapping function. The ‘pixels’ are
larger than key tabs to compensate for ambiguous and noisy trajectories.

3 PRE-TRAINING A NEURAL DECODER INTO A GENERALIZ-
ABLE MODEL

As outlined in the comparison between SHARK2 and the conventional
neural decoder discussed in Section 2.2.4, there is a critical need for
a model to achieve a balance between ease of configuration and high
accuracy in word-gesture decoding. To this end, we introduce a model
that combines the simplicity of setup with robust performance, thereby
mitigating the weaknesses of each of the former approaches. Draw-
ing inspiration from large language models known for their zero-shot
learning capabilities, which are achieved through pre-training on vast
corpora [10,30], we aim to pre-train a neural decoder with a substantial
volume of data to achieve generalizability for different WGK systems.
However, direct training using the Cartesian coordinate sequence x
utilized by both SHARK2 [32] and the neural decoder [7] is impracti-
cal, as these sequences are fine-grained and vary significantly across
different WGK systems in AR and VR.

We propose a novel encoding method that encodes the continuous
trajectory sequence into a coarse discretized representation, as illus-
trated by Figure 2. This approach addresses the challenge of dataset
variability and enhances our model’s understanding of trajectory pat-
terns. In the following sections, we will elaborate on our discretization
methodology, provide details of our training data, and describe the
specialized architecture of our model designed to optimize pre-training
effectiveness.

3.1 Word-Gesture Trajectory Discretization
Encoding is the process of transforming unstructured data into struc-
tured elements that a computer can process. In previous attempts to
encode word-gesture trajectories [7, 32, 50], the strategy involved uti-
lizing Cartesian coordinate positions. From an information theory
perspective, using coordinate positions directly for word-gesture decod-
ing has limitations due to their continuous nature, whereas the desired
output (characters) is discrete. Continuous data can vary infinitely
within a given range, leading to a high degree of uncertainty and re-
quiring more information to specify each point precisely. In contrast,
discrete outputs, such as characters, have a finite set of possibilities.
This mismatch means that directly mapping continuous input to dis-
crete output can introduce inefficiencies and inaccuracies, necessitating
algorithms to effectively bridge this gap by discretizing the continuous
input or employing strategies to reduce the information loss during this
conversion.

Our method discretizes a word-gesture trajectory into coarse dis-
cretized ‘pixel’ regions on the keyboard, a process we refer to as word-
gesture trajectory discretization. Figure 2 demonstrate this discretiza-
tion process and Figure 6c visualize the discretized trajectory in one-hot-
encoding for the word ‘quickly’ using a heatmap. Instead of tracking
continuous movement, we assign each segment of a word-gesture tra-
jectory to the corresponding ‘pixel’ region it traverses according to
a mapping function. This approach simplifies complex word-gesture
trajectories into a sequence of discrete ‘pixels.’ This discretization
enhances the accuracy of recognizing word-gesture patterns by min-
imizing the impact of noise in position tracking, variations in user
behavior and keyboard sizes, thereby making the neural decoder more
efficient at predicting user input. This method effectively bridges the
gap between the continuous nature of word-gesture trajectory and the
discrete structure of text input, enabling more accurate and efficient
decoding of word-gesture trajectories. Formally:

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456198

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on October 06,2024 at 19:03:59 UTC from IEEE Xplore. Restrictions apply.

1. Discretizing the keyboard into discretized regions based on the
positions of the keys, where each region is defined by a square with
height and width proportional to the key tab’s dimensions, adjusted by
a ratio factor.
2. Define a mapping function C(x) that maps a given trajectory point
(xi) to a region based on the discretized regions it falls within. This
function embodies the discretization process, assigning each point on
the keyboard to a specific region.
3. The discretized trajectory T can be expressed as T = {C(x) | (xi) ∈
S}, where each element C(xi) is the region corresponding to the seg-
ment of the trajectory passing through that region on the keyboard. The
discretized trajectory is then one-hot encoded and used as the input for
the neural decoder.

This mathematical formulation encapsulates the process of trans-
forming continuous word-gesture trajectory into discrete sequences of
‘pixels’.

3.2 Training Dataset

We pre-trained the pixellated neural decoder using two datasets:

1. Mobile Phone WGK Dataset: Our research utilizes a public dataset,
‘how we swipe’ [34], gathered through a web-based custom virtual
keyboard on mobile devices. This dataset includes 8,831,733 touch
points corresponding to 11,318 unique English words gestured by 1,338
users, with 11,295 unique words correctly gestured and 3,767 words
gestured inaccurately.
2. Synthetic Dataset: Our study integrates the GAN (Generative Ad-
versarial Network)-Imitation model proposed by Shen et al. [48], which
they subsequently applied this model to synthesize word-gesture tra-
jectories [49]. They then performed extensive evaluations and compar-
isons of the GAN-Imitation model with other techniques for generating
synthetic word-gesture trajectory data to train neural decoders [50].
For our research, we adopted the synthetic strategy detailed in [50],
training the synthetic model using the Mobile Phone WGK Dataset.
In this paper, we do not analyze synthetic data generation methods,
instead concentrating our efforts on examining the discretization and
pre-training approaches.

We have constructed a large-scale training dataset comprising 95,649
trajectory samples from the Mobile Phone WGK Dataset, alongside
100,000 trajectory samples from the Synthetic Dataset. This dataset
consists of 32,347 unique words.

3.3 Implementation Details

Here is a detailed description of our model and the associated training
specifics. We conducted a comprehensive hyperparameter optimization
process to determine the values of the hyperparameters [9].

• Model Configuration: We use PyText [41] to implement our model.
The core of our model comprises a Bi-directional Long Short-Term
Memory (BiLSTM) [25,53] layer, which is crucial for understanding
the temporal dependencies within the input sequences. This repre-
sentation layer consists of two stacked LSTM layers with a hidden
dimension of 222, allowing the model to capture both forward and
backward context effectively. To prevent overfitting, a dropout rate of
0.3 is applied within this layer, providing regularization by randomly
omitting a subset of features during training. Following the creation
of the representation layer, a dense fully connected layer serves as an
intermediary, facilitating the transition from the LSTM output to the
decoder. This layer employs a Rectified Linear Unit (ReLU) [6] acti-
vation function, layer normalization [8], and an additional dropout
rate of 0.3 to maintain regularization. The final component of our
model is the decoder layer, which utilizes a Connectionist Temporal
Classification (CTC) [20] beam decoder. This decoder implements a
beam search algorithm [18] to efficiently explore the most probable
word candidates by evaluating combinations of character probabil-
ities at each timestep. Beam search enhances the model’s ability
to predict sequences accurately by considering multiple hypotheses
concurrently.

(a) VR mid-air pinch WGK.

(b) VR mid-air poke WGK.

Fig. 3: Data collection of 200 participants for mid-air word-gesture key-
boards (WGK) in VR.

• Training Details: For training our model, we employed the
Adam [28] optimizer with a learning rate of 0.01, complemented
by a minimal weight decay of 0.00001 to prevent overfitting further.
The training process was conducted over 600 epochs, with an early
stopping mechanism disabled to allow the model to fully converge.
The batch size for training, evaluation, and testing was uniformly
set to 128 to balance computational efficiency and training stability.
The model was initialized with random weights for training. To
accommodate the computational demands of training and ensure
numerical stability, we adopted mixed-precision training using the
‘FP16OptimizerFairseq’ from Fairseq [44], starting with an initial
loss scale of 128. This approach not only accelerates training but
also reduces the memory footprint, allowing for the use of larger
batch sizes or models. Additionally, our training regimen included
reporting metrics to TensorBoard [5] for real-time monitoring and
analysis of the model’s performance. The best model configuration,
as determined by Top-4 word prediction accuracy, was automati-
cally saved and loaded post-training to ensure that our results were
based on the peak performance of the model. This configuration
was achieved through a hyperparameter sweep, experimenting with
over 100 configurations, including the number of LSTM layers, the
dimension of the LSTM layer, the dropout rate, and the learning rate,
to find the optimal model that achieves the highest accuracy while
ensuring the model size remains below 5 MB.

4 VALIDATION DATASETS

We posit two hypotheses: firstly, that distinct WGK systems exhibit
unique data patterns; and secondly, that our Pre-trained Neural Decoder
serves as a universally applicable solution across various WGK systems.
To explore these hypotheses, we have collected an array of datasets
from different WGK systems, encompassing a range of interactions
including on-surface touch, mid-air poking (pointing), and mid-air
pinching (raycasting) [43] across both AR and VR platforms featuring
keyboards of different sizes. Table 1 gives an overview of the four
datasets.

4.1 Mid-Air WGK in VR
We begin our exploration by examining WGKs within virtual reality
(VR), a domain that has seen extensive investigation [14]. Notably,
platforms such as Quest Headsets [42] have integrated mid-air WGK
functionalities in their v56 updates [40]. Our primary focus lies on
two interaction modes: mid-air poke WGK and mid-air pinch WGK.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456198

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on October 06,2024 at 19:03:59 UTC from IEEE Xplore. Restrictions apply.

Mobile Phone WGK Mid-Air Poke (AR) Mid-Air Poke (VR) Mid-Air Pinch (VR) On-Surface WGK

Number of Users 1,338 16 200 200 100

Device Platform Mobile Phone HoloLens 2 Quest 2 Quest 2 PC

Number of Unique Words 11,295 1,700 3,000 3,000 2,123

Number of Samples 95,649 25,513 51,413 51,433 33,594

Text Entry Rates (WPM) 31.11 (SD=12.49) 21.39 (SD=13.17) 26.9 (SD=10.19) 27.4 (SD=9.88) 24.7 (SD=11.14)

Touch Points Statistics 0.15 (0.27) 0.042 (0.063) 0.030 (0.049) 0.028 (0.045) 0.12 (0.23)

Table 1: We gathered datasets from five unique WGK systems. We report text entry rates with the mean and standard deviation (SD). We report two
touch point statistics: Average Distance to Key Center (ADKC) and Average Major Axis Length (AMAL) in the parentheses. The computation of these
two statistics is detailed in Section 5.1.

Despite extensive studies exploring these two interactions [15,52], there
are no public datasets available on VR mid-air WGK. To address this
gap, we undertook our own data collection, involving a substantial scale
of 200 users. The details of our study are as follows:

1. Participants: We recruited 200 volunteers as participants through
an internal mailing list, with an age distribution as follows: 46 in their
20s, 74 in their 30s, 51 in their 40s, and 29 in their 50s. The group
comprised 100 males and 100 females. We collected responses from
participants about the frequency of their word-gesture typing usage on
mobile phones: 20% had rarely or never used it, 32% sometimes used
it (at least once a month), 26% often used this feature (at least once a
week), and 22% always used the feature (at least once a day).
2. Procedure: Data collection was conducted in the participants’
homes using the retail Quest 2, with the Android Application Package
(APK) delivered via the experiment app on the Oculus Store. Partici-
pants were randomly assigned to two groups, each experiencing two
conditions: pinch first and poke first. Before these conditions, users
were introduced to the study through a step-by-step tutorial explaining
the experiment. Figure 3a and Figure 3b demonstrate the word-gesture
typing technique with pinch and poke interaction modes used in the
study. The experiment application uploaded the study logs via a Drop-
box API upon completion. We employed a ‘Wizard of Oz’ decoding
strategy, akin to that described in Shen et al. [51], to guarantee the
integrity of the data collected. Each condition for one participant takes
around 30 minutes to complete.
3. Phrase Set: The phrase dataset was curated from the GLUE [56],
MacKenzie [37], and Enron [29] datasets, resulting in a collection
of 2,700 unique phrases comprising 3,000 unique words. No other
information except text entry data was collected during the study, and
the text entry data was anonymized.

4.2 Mid-Air WGK in AR
The distinction between AR and VR in the context of mid-air WGK lies
in the interaction feedback when directly poking the virtual keyboard:
AR allows for ‘real’ hand interaction with a virtual keyboard, whereas
VR facilitates interaction through a virtual hand with a virtual keyboard.
Consequently, VR interaction is more precise because users can accu-
rately see the virtual hand’s position relative to the virtual keyboard,
creating a closed-loop feedback system from the user’s physical hand
to the virtual hand control. Conversely, in AR, the absence of a virtual
hand and the inaccuracies in hand tracking lead to an open-loop nature
in hand interaction and control, potentially resulting in noisier input
data [27]. In contrast, AR and VR mid-air pinch word-gesture typing
operate similarly, offering a closed-loop system of projected remote
cursor control on the virtual keyboard without significant differences.
Therefore, in AR, the focus is on poke-based mid-air WGK.

We utilized two public datasets regarding AR mid-air pinch word-
gesture typing, which were taken from the studies conducted by Shen et
al. [50,51]. In one study, Shen et al. [51] introduced AdaptiKeyboard, a
personalizable mid-air WGK for AR specifically designed for HoloLens
2. This keyboard employs multi-objective Bayesian optimization to
dynamically adjust the keyboard size, aiming to optimize both speed
and accuracy concurrently. The data collected for this study involved

very hard to get lost

STATUS

q w e r t y u i o p

a s d f g h j k l

z x c v b n m

(a) Study page showing device connectivity, study progression, and
keyboard with the cursor.

(b) We use a haptic touchpad with a capacitive grid [1] to collect ground
truth trajectory data.

Fig. 4: Data collection of 100 participants for on-surface word-gesture
keyboards (WGK).

word-gesture typing on various sizes gathered from 12 participants. In
a separate study, Shen et al. [50] presented a novel mid-air WGK design
that removed visual feedback and relaxed the delimitation threshold.
Throughout their user studies, they collected word-gesture typing data
using different interaction designs from 34 participants.

4.3 On-Surface WGK

Apart from mid-air WGK, we also investigate on-surface WGK, which
can be utilized in both AR and VR environments. On-surface WGK
requires clear delimitation, similar to how WGK is performed on touch-
screens; that is, placing a finger on the surface signals the beginning
of a trajectory, and lifting it off the surface signals the end of the tra-
jectory. To collect on-surface WGK data, we opt for alternatives to the
built-in hand tracking from AR/VR headsets, as the current computer
vision-based hand tracking cannot accurately detect the on-surface
delimitation. Therefore, we use Sensel’s haptic touchpad with capaci-
tive touch and force field sensors [1] to collect ground truth trajectory
data (Figure 4b). Moreover, instead of using a headset for display,
we employ a monitor screen connected to a personal computer (PC),
showing a virtual keyboard. This setup fully simulates a virtual touch-
pad, which can be on the palm [36], or any other surface in an AR
environment [4, 43]. This data collection resulted in a total of 33,594
trajectories, encompassing 2,123 unique words from 100 participants.

The following provides further details on the data collection process:

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456198

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on October 06,2024 at 19:03:59 UTC from IEEE Xplore. Restrictions apply.

1. Participants: We recruited 100 volunteers as participants through
an internal mailing list, with an age distribution as follows: 19 in their
20s, 44 in their 30s, 24 in their 40s, and 13 in their 50s. The group
comprised 64 males, 33 females, and 3 participants who preferred not
to disclose their gender. We collected responses from participants about
the frequency of their word-gesture typing usage on mobile phones:
12% participants had rarely or never used it, 33% sometimes used it (at
least once a month), 43% often used it (at least once a week), and 12%
always used the feature (at least once a day).
2. Procedure: Participants were seated in front of computer screens
that displayed a keyboard interface, complete with a cursor and its trace,
as illustrated in Figure 4a. They interacted with the interface using
Sensel’s haptic touchpad (Figure 4b) to facilitate word-gesture typing of
prompted words on the screen. Each participant was tasked with word-
gesture typing 160 words, randomly selected from an extensive phrase
set, to ensure broad data collection. To mitigate fatigue, participants
could take breaks of up to two minutes after completing sets of 10
words. We developed a front-end interface using Lab.js [24], which
visualized the cursor and its trace and automatically generated random
phrase prompts from the phrase set. Similarly to the method employed
in Section 4.1, we utilized a ‘wizard of oz’ decoder for data collection.
Each session for one participant takes around 1 hour to complete.
3. Phrase Set: The phrase dataset was created from two distinct
sources: the Enron Mobile Corpus [29] and the MacKenzie phrase
set [37], resulting in a collection of 2,320 unique phrases comprising
2,123 unique words.

5 WORD-GESTURE DATA ANALYSIS

We investigate the word-gesture typing datasets through two analyti-
cal perspectives: the assessment of touch point distributions and the
evaluation of a geometric feature: curvature.

5.1 Touch Point Distribution Analysis
We utilized the visualization methods from Chen et al. [35] to compute
the touch point distributions (visualized by plotting 95% confidence
ellipses for each key) across various validation datasets. Additionally,
we compute the statistics of the touch point distributions for each
dataset:
• Average Distance to Key Center (ADKC): The average distance

from the center of each ellipse to the centers of the corresponding
keys, again averaged over all keys. This metric assesses the bias in
touch point locations relative to the intended target. The equation for
computing this statistic is:

ADKC =
1
N

N

∑
i=1

√
(xc,i − xk,i)2 +(yc,i − yk,i)2

where (xc,i,yc,i) denotes the center of the ellipse for key i, and
(xk,i,yk,i) represents the center of key i.

• Average Major Axis Length (AMAL): The average of the major
axes lengths of the 95% confidence ellipses, calculated across all keys.
This quantifies the spatial dispersion of touch points for each key,
providing a measure of touch accuracy and precision. The equation
for this statistic is:

AMAL =
1
N

N

∑
i=1

2
√

λi,max

where λi,max represents the largest eigenvalue of the covariance ma-
trix for the touch points on key i, and N is the total number of keys.

The computation of these statistics is based on normalizing trajectory
data to a unit-width keyboard for a fair comparison between keyboards
of different sizes. The plots for these distributions are displayed in
the second row of Figure 1, and the statistics are presented in Table 1.
Our observations revealed distinct word-gesture typing interactions,
each showcasing a unique distribution of touch points. Specifically, AR
mid-air WGK exhibits more noise compared to VR WGK, attributable

Mob
ile

Ph
on

e

AR po
ke

VR po
ke

VR pi
nch

On-s
urf

ace

130

140

150

160

170

180

Cu
rv

at
ur

e

Fig. 5: Box plots depicting mean, median, and quartiles of the curvature
of the trajectories from the five datasets.

not only to the aforementioned distinction between AR and VR hand
interactions in Section 4.2, but also to other device-dependent factors.
First, the HoloLens 2 offers lower hand tracking accuracy than the
Quest 2, affecting precision. Second, in optical see-through AR, users
can see a virtual keyboard without occlusion of their physical hands,
complicating the task of accurately locating the virtual keyboard in re-
lation to their hands. This challenge is compounded by the fact that the
HoloLens 2 does not perform hand segmentation, allowing users to see
their hands both before and beyond the virtual keyboard simultaneously.
Lack of occlusion and the positioning of the virtual keyboard far from
their hands introduce inaccuracies not only in tracking but also in user
perception.

The ‘fat finger’ problem becomes particularly noticeable with on-
surface word-gestures and mobile phone word-gestures, marked by a
scattered distribution of touch points and the larger AMAL and ADKC
values. The term ‘fat finger’ effect describes the difficulty users face
when their fingers, which are relatively large compared to the keys
or touchpoints, mistakenly press adjacent keys or register incorrect
word-gestures. This problem is a direct result of the small touch sur-
faces of mobile devices and touchpads. Unlike mid-air keyboards,
which are larger and thus more accommodating to the natural size of
human fingers, the touch surfaces on mobile phones and touchpads are
considerably smaller, making it challenging to hit the intended keys
accurately.

5.2 Geometric Feature Analysis
We evaluate the geometric distinctions across datasets through a geo-
metric feature: curvature [49]1.

Curvature quantifies the local bending at any point along a curve,
serving as an indicator of the degree to which it diverges from a straight
line. A high curvature value signifies a pronounced bend, whereas a
low curvature corresponds to a minor bend or a linear trajectory.

Figure 5 showcases the diversity in curvature present across the
datasets. We note that VR-based WGK exhibits a broader and lower
curvature range, suggesting a predominance of more linear trajecto-
ries. This pattern could stem from extensive body movements in a
large interaction space, which tend to produce more straightforward
trajectories. Conversely, AR maintains less linear trajectories due to
the challenges associated with the interaction between physical hands
and virtual keyboard. Among the datasets analyzed, on-surface WGK
displays the most pronounced curvature, indicative of highly curved
trajectories. This observation is attributed to the less direct control over
the cursor compared to the control mechanisms found in Mobile Phone
WGK and Mid-Air WGKs.

6 EXPERIMENTS

Our research uses a series of experiments to assess the efficacy of a
Pre-trained Neural Decoder across the four datasets. Initially, we eval-
uate the performance of the pre-trained decoder against benchmarks,
specifically SHARK2 and a conventional neural decoder, to establish a

1Details of the computation of curvature can be found in [49].

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456198

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on October 06,2024 at 19:03:59 UTC from IEEE Xplore. Restrictions apply.

Mid-Air Poke (AR) Mid-Air Poke (VR) Mid-Air Pinch (VR) On-Surface WGK

Top-1 Top-4 Top-1 Top-4 Top-1 Top-4 Top-1 Top-4

SHARK2 [32] 43.2%
(±3.2%)

51.3%
(±2.4%)

50.3%
(±3.9%)

55.9%
(±3.1%)

48.9%
(±2.5%)

54.7%
(±2.7%)

42.1%
(±4.1%)

49.2%
(±4.3%)

Conventional Neural Decoder [7] 74.6%
(±1.8%)

81.0%
(±1.3%)

79.8%
(±2.0%)

86.3%
(±1.9%)

77.9%
(±2.1%)

84.8%
(±2.4%)

71.5%
(±2.2%)

81.6%
(±1.9%)

Pre-trained Neural Decoder 82.5%
(±1.4%)

89.8%
(±1.1%)

85.1%
(±1.9%)

91.9%
(±1.4%)

82.7%
(±1.5%)

90.2%
(±1.0%)

83.0%
(±2.0%)

89.5%
(±1.8%)

Table 2: Decoding accuracy on four datasets of our proposed Pre-trained Neural Decoder compared to two baselines: SHARK2 and conventional
neural decoder. Results are reported in Top-1 and Top-4 accuracy, standard deviation is reported in parentheses.

comparative baseline. Subsequently, we discuss the potential enhance-
ments achievable through fine-tuning the decoder on specific datasets.
Furthermore, we conduct studies to examine the influence of different
discretization techniques. Additionally, we explore alterations to the
model’s architecture to identify which structural configurations yield
the optimal results for pre-training. Lastly, we assess the latency of the
Pre-trained Neural Decoder.

6.1 Baselines Comparison

6.1.1 Baselines

In this study, we evaluate the performance of a pre-trained decoder by
comparing it with two established baselines:

1. SHARK2 Decoder: For our evaluation, we adopt the parameter
settings detailed by Kristensson et al. [32], ensuring a direct comparison
under standardized conditions.
2. Conventional Neural Decoder: The backbone of the conventional
neural decoder is the same as our Pre-Trained Neural Decoder, with the
only difference being the dimension of the input layer to accommodate
the dimension of the Cartesian trajectory input.

Following the setup, both baseline decoders and the Pre-trained Neu-
ral Decoder are subjected to thorough testing on the designated test
datasets. We employ the Leave-One-Subject-Out methodology for our
experiments. This structured approach allows for a comprehensive
assessment of each decoder’s capabilities in handling real-world data.

6.1.2 Evaluation Measure

We use Top-k accuracy to evaluate the models. Top-k accuracy mea-
sures the model’s ability to predict the correct word within its Top-k
predictions. Formally, let yi be the true label for the i-th instance
and let Pi,k be the set of top k predictions for the i-th instance made
by the model. The Top-k accuracy over N instances is defined as:
1
N ∑

N
i=1 1

(
yi ∈ Pi,k

)
, where 1(·) is the indicator function, which is 1 if

the condition is true and 0 otherwise. In our analysis, we specifically
report on Top-1 and Top-4 accuracy, providing insights into both the ac-
curacy of the model’s primary prediction and its ability to offer relevant
alternatives within the top four suggestions.

6.1.3 Results

Table 2 reveals that our Pre-trained Neural Decoder significantly sur-
passes both the SHARK2 decoder and the conventional neural decoder.
The Pre-trained Neural Decoder achieves an average Top-1 accuracy
of 83.3% and an average Top-4 accuracy of 90.4%. Switching from
the SHARK2 decoder to a Pre-trained Neural Decoder results in an
average increase of 37.2% for Top-1 accuracy and 37.6% for Top-4 ac-
curacy. Moving from a naively trained neural decoder to a Pre-trained
Neural Decoder leads to additional improvements in average accuracy,
with a 7.4% increase for Top-1 and a 6.9% increase for Top-4. The
average accuracy of the Pre-trained Neural Decoder across various
tasks is 83.3%. This Top-1 accuracy is already sufficient for research
use. By equipping the Pre-trained Neural Decoder with a bigram lan-
guage model and an auto-correction module of vocabulary size over
50,000 [50, 55], the average improvement is 11.2%, resulting in a final

Mid-Air
Poke (AR)

Mid-Air
Poke (VR)

Mid-Air
Pinch (VR)

On-Surface
WGK

Pre-trained 82.5%
(±1.4%)

85.1%
(±1.9%)

82.7%
(±1.5%)

83.0%
(±2.0%)

Fine-tuned 85.8%
(±1.2%)

88.0%
(±1.5%)

86.7%
(±1.8%)

86.4%
(±2.3%)

Table 3: Decoding accuracy after fine-tuning the Pre-trained Neural
Decoder.

average Top-1 accuracy of 94.5%, which is an adequate accuracy rate
for large-scale commercial use.

6.2 Fine Tuning Improves Model Performance, but
Marginally

We conducted a comprehensive analysis to evaluate the impact of model
fine-tuning. Our hypothesis suggests that fine-tuning, particularly when
tailored to specific datasets, could markedly enhance the neural de-
coder’s performance. Each dataset typically exhibits unique features
or distributions inherent to its domain. Fine-tuning enables the neural
decoder to adjust its pre-existing representations to accurately capture
these domain-specific attributes. To validate our hypothesis, we rigor-
ously fine-tuned the Pre-trained Neural Decoder with the training set
of each dataset and assessed the neural decoders using the respective
test sets. Table 3 demonstrates that fine-tuning effectively leverages
the comprehensive learning acquired by the Pre-trained Neural De-
coder, channeling their extensive capabilities to address the unique
characteristics presented by a new dataset. The average improvement
from the Pre-trained Neural Decoder to the fine-tuned decoder across
all datasets is 3.4%. However, the average improved performance
is not as large as the difference between the Pre-trained Neural De-
coder to the conventional neural decoder and the SHARK2. Therefore,
the Pre-trained Neural Decoder already achieves adequate accuracy
for research purposes and becomes suitable for commercial use when
equipped with a language model. Thus, fine-tuning is not necessary.

6.3 Word-Gesture Trajectory Discretization Analysis
Word-gesture trajectory discretization consists of two main components:
the mapping function and the index encoding method. We explore
various mapping functions and index encoding methods independently.

6.3.1 Mapping Function

To refine the concept of defining the mapping function C(x,y) which are
the regions for the trajectory coarse discretization in virtual keyboards,
we examine the utility of square and elliptical regions.
• Square Regions: The condition for a point (x,y) to be within a square

region centered at (xc,yc) with dimensions 2w and 2h is:|x− xc| ≤
w and |y− yc| ≤ h, where w and h are half the width and height of
the rectangle, respectively.

• Ellipse Regions: For an elliptical region around a key, centered at
(xc,yc) with semi-major axis a and semi-minor axis b, a point (x,y)

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456198

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on October 06,2024 at 19:03:59 UTC from IEEE Xplore. Restrictions apply.

Mid-Air
Poke (AR)

Mid-Air
Poke (VR)

Mid-Air
Pinch (VR)

On-Surface
WGK

Square
Region

82.5%
(±1.4%)

85.1%
(±1.9%)

82.7%
(±1.5%)

83.0%
(±2.0%)

Ellipse
Region

81.9%
(±1.5%)

84.6%
(±1.9%)

81.2%
(±1.9%)

83.2%
(±1.7%)

Table 4: Decoding accuracy of using different mapping functions to map
segments of a word-gesture trajectory to discrete ‘pixel’ regions.

Mid-Air
Poke (AR)

Mid-Air
Poke (VR)

Mid-Air
Pinch (VR)

On-Surface
WGK

One-Hot
Encoding

82.5%
(±1.4%)

85.1%
(±1.9%)

82.7%
(±1.5%)

83.0%
(±2.0%)

Integer
Encoding

73.2%
(±2.7%)

73.2%
(±3.2%)

68.0%
(±2.6%)

64.2%
(±3.0%)

Table 5: Decoding accuracy of different index encoding approaches.

falls within this region if: (x−xc)
2

a2 +
(y−yc)

2

b2 ≤ 1.

By incorporating these shapes into C(x,y), we adjust the function to
account for the region’s shape associated with each keyboard character.
This involves first identifying the shape and parameters for each key’s
region, then applying the corresponding condition to map (x,y) to its
character. For the Square Region, we define w and h as twice the
key width and height, respectively. Similarly, in the Ellipse Region,
we also define the semi-major axis a and semi-minor axis b as twice
the key width and height. This decision is informed by the Mobile
Phone WGK touch point distribution analysis. The analysis indicates
that the average ratio, derived from comparing the mean values of
the semi-minor and semi-major axes of the 95% Confidence Ellipses
to the mean dimensions (width and height) of keys, is approximately
2. Having larger ‘pixels’ also makes the discretized trajectory more
tolerant to spatial noise and improves the neural decoder’s ability to
handle ambiguity.

Table 4 presents the results of decoding accuracy from different
mapping functions. We observed that Square Regions perform slightly
better on average than Ellipse Regions, but not significantly. Therefore,
the decision to use Square Regions is based on computational expense.
Computing the condition for being within/outside Square Regions is
less computationally expensive compared to Ellipse Regions. This is
because, for a square region centered at (xc,yc) with side length 2s,
checking if a point (x,y) is inside is simple: |x− xc| ≤ s and |y− yc| ≤
s. This involves basic arithmetic and logical operations, making it
computationally light. Conversely, determining if a point lies within an
elliptical region centered at (xc,yc) with semi-major axis a and semi-

minor axis b requires a more complex formula: (x−xc)
2

a2 +
(y−yc)

2

b2 ≤ 1.
This involves squaring differences, dividing by the axes’ squares, and
summing the fractions, which are more computationally demanding
tasks than those for square regions.

6.3.2 Index Encoding

Word-gesture trajectory, even when discretized into pixels, still require
representation through numerical values for machine learning models to
effectively learn from them. This essential step is known as encoding.

In our exploration, we delve into various ‘pixel’ index encoding
methods: 1. Integer Encoding: This method assigns a unique integer
value to each ‘pixel’. For instance, ‘a’ is represented by the number
1, ‘B’ by the number 2, and so on. This simple yet effective technique
ensures that each element is distinctly identifiable by a specific numeri-
cal value. 2. One-Hot Encoding: One-hot encoding takes a different
approach, where each ‘pixel’ is represented by a vector. This vector
contains all zeros except for a single one at the position corresponding
to the pixel. For a 26-letter alphabet, the letter ‘a’ would be represented
by a vector starting with [1, 0, 0, ..., 0], and ‘b’ would follow as [0, 1,

0, ..., 0]. This method provides a clear, binary representation of each
character, distinguishing each one within a high-dimensional space.

Table 5 demonstrates that one-hot encoding performs better than inte-
ger encoding. Moreover, one-hot encoding avoids implying a numerical
relationship between pixels. Integer encoding could lead the model to
assume an ordinal relationship where none exists, potentially skewing
the learning process. One-hot encoding represents each ‘pixel’ as a
distinct, equally distant vector, facilitating more accurate predictions.

6.4 Model Structure
We conducted tests using a transformer [54] as the representation layer
to learn latent representations, contrasting it with an LSTM-based
approach. We experimented with various transformer model hyperpa-
rameters, and our findings indicate that the transformer layer struggles
to effectively learn the patterns, consistently achieving a Top-1 accuracy
of below 60%, rendering it impractical for use. This underperformance
of transformers compared to LSTMs in word-gesture typing decoding
may stem from their inferior capability to manage the precise, localized
context inherent in word-gesture trajectories. The inherent sequence
processing ability of LSTMs better captures temporal dependencies
crucial for this task. Additionally, transformers may require even larger
datasets with millions of training samples to avoid overfitting and their
complex architecture might not suit the latency requirements of a real-
time word-gesture decoder.

6.5 Latency Analysis
Despite their high performance, deep-learning models can sometimes
be too large and incapable of running in real-time. This is critical for
applications like word-gesture typing decoders, which must operate
in real-time. To address the real-time performance of our model, we
used TorchScript [45] to script and export the model. Additionally, we
applied PyTorch’s quantization tool to reduce the model size signifi-
cantly without sacrificing the accuracy [45]. This is possible because
we report Top-K and Top-1 word prediction accuracy, evaluating the
model’s predictions at the word level, even though the model predicts a
sequence of characters. After quantization, the model’s performance
increased by an average of 0.8% in character error rate (CER), which
measures the percentage of incorrectly predicted characters. However,
when measured in Top-1 word prediction accuracy, which is calculated
as 100 − word error rate (WER), the accuracy remained unchanged
because evaluating at the word level has a coarser granularity than
evaluating at the character level. The quantized model is only 4 MB
in size and can run with a latency of 97 ms on a Quest 3. Generally,
latencies below 100 ms are considered good for real-time interactions
because they are perceived as nearly instantaneous by users.

7 DISCUSSION

In this section, we discuss the following different aspects:
• Contribution and Novelty: In this study, we propose a novel ap-

proach to pre-training a neural decoder for word-gesture typing that
demonstrates remarkable generalizability across various systems. By
employing a unique discretization method to encode word-gesture
trajectories, our model effectively learns from a vast dataset of real
and synthetic data. This pre-training enables the decoder to accu-
rately predict user input across diverse word-gesture typing systems
in AR and VR environments without the need for fine-tuning. The
significance of our contribution lies in developing a universal solution
that combines the ease of configuration with high decoding accuracy,
addressing the limitations of existing approaches such as SHARK2

and conventional neural decoders.
• Why Our Method Works: The success of our method can be at-

tributed to the discretization of word-gesture trajectories. By con-
verting continuous trajectories into discrete ‘pixels’, we simplify the
input space and allow the model to focus on learning the essential
patterns of user input, as illustrated by Figure 6. Notably, the conven-
tional neural decoder predicts only ‘quick’, whereas the Pre-Trained
Neural Decoder accurately predicts ‘quickly’. This is illustrated in
Figures 6b and 6d, where red ’pixels’ signify high confidence in the

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456198

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on October 06,2024 at 19:03:59 UTC from IEEE Xplore. Restrictions apply.

(a) Cartesian Trajectory for
‘quickly’ on QWERTY Keyboard.

(b) Heatmap Visualizing Model
Output from the Conventional Neu-
ral Decoder.

(c) Heatmap Visualizing One-Hot
Encoding of the Coarsely Dis-
cretized Trajectory for ‘quickly’.

(d) Heatmap Visualizing Model
Output from the Pre-Trained Neu-
ral Decoder.

Fig. 6: This illustration provides a visual comparison of both the input y and output π for the conventional neural decoder and Pre-Trained Neural
Decoder, specifically in the context of decoding the word ‘quickly’.

character on the y-axis at the time step t on the x-axis. This distinc-
tion is highlighted through the visualization of inputs: the Cartesian
trajectory (Figure 6a) and the one-hot encoding of the coarsely dis-
cretized trajectory (Figure 6c). The one-hot encoding aligns with
the neural decoder’s output space, sharing the same dimensions in
terms of the number of classes and time length, which facilitates
learning. In contrast, for the conventional neural decoder, the input
(i.e., the Cartesian trajectory) exists in a continuous space, differing
from the output’s discrete space representation, thereby complicating
the learning process.

• Adoption to Touch-Type Decoding: While our study primarily
focuses on word-gesture typing, the proposed approach can easily
adapt to touch-type decoding. The discretization method can be
applied to individual key presses, representing each touch point
as a discrete ‘pixel.’ The model can learn to predict the intended
characters based on the spatial distribution of touch points by training
the neural decoder on a large dataset of touch-typing data. This
adaptation would enable developing a robust and accurate touch-
type decoder that can handle the challenges posed by the ‘fat finger’
problem and variations in user typing patterns.

• Discretization as a Technique in other Applications: In addition
to its application in word-gesture typing, the discretization of contin-
uous input has the potential to benefit various other machine learning
problems. By converting continuous input into discrete represen-
tations, such as ‘pixels’ or bins, the complexity of the data pattern
can be reduced, making it more manageable for machine learning
algorithms. Potential applications that can benefit from the discretiza-
tion of continuous input include eye tracking, where discretization
can simplify the interpretation of eye movement data, and affective
computing, where discrete emotional states can be mapped from
continuous physiological signals.

• The Potential Impact of Head-Mounted Display (HMD) Hand
Tracking Accuracy on Word Prediction: Current video see-through
HMDs, such as Meta Quest [42] and Apple Vision Pro [2], offer ro-
bust hand tracking with real-time visual feedback, showing rendered
illustrations of hands for mid-air interactions. For example, a ren-
dered hand appears when poking a virtual keyboard, or a cursor
shows during a mid-air pinch, creating a closed-loop interaction.
This visual feedback allows users to adjust their hand movements,
reducing the impact of inaccurate tracking on text entry accuracy.
In contrast, optical see-through HMDs like HoloLens [3] enable
open-loop interaction by relying on natural hand perception without
rendered visuals. Shen et al. [50] investigated this by removing the
visual feedback of a projected cursor on a mid-air gesture keyboard
in HoloLens 2, finding that word prediction accuracy remained un-
affected due to the robustness of conventional neural decoders. Our
proposed Pre-trained Neural Decoder, tested on Shen et al. [50]’s

dataset without visual feedback, achieved a Top-4 test accuracy of
90.1%, demonstrating its ability to handle hand tracking inaccuracies
in HMDs effectively.

8 LIMITATIONS AND FUTURE WORK

Our research, while comprehensive, is not without its constraints. The
pre-trained decoder is optimized for QWERTY keyboards and may
not perform as well with keyboards with different key arrangements.
Researchers actively explored new layouts such as the Metropolis [63],
Opti [38] and Dvorak [17] for potential benefits in ergonomics, typing
efficiency, or language accommodation, despite that these alternative
layouts introduce learnability and adoption challenges for users [13].
Our Pre-trained Neural Decoder may not work seamlessly with alter-
native layouts out of the box, as the discretization process assumes a
specific key arrangement with QWERTY sequential order.

Furthermore, although we have successfully validated our model
across four distinct datasets from various word-gesture typing systems
in AR and VR environments, numerous other less common system
designs exist, such as curved keyboards and eye-gaze-based word-
gesture typing. While these were not explicitly tested, our model’s
functionality is rooted in its ability to process noisy and ambiguous
trajectories.

Future work includes training the neural decoder on a larger, com-
bined dataset and developing a transformer-based neural decoder. Initial
tests with the transformer architecture showed poor performance, likely
due to inadequate training data leading to overfitting. We aim to train
the transformer-based decoder on a larger dataset and customize it to
better accommodate long temporal patterns and meet latency require-
ments.

9 CONCLUSION

This paper introduces a novel Pre-trained Neural Decoder that demon-
strates remarkable versatility and accuracy for word-gesture typing
across diverse AR/VR systems. By discretizing complex gesture trajec-
tories into coarse ‘pixels’ and pre-training on a large dataset, our model
learns to accurately predict words from different datasets across various
interaction modes and device platforms without requiring specific fine-
tuning. Extensive evaluations on four challenging datasets showcase the
Pre-trained Neural Decoder’s strong performance and generalizability,
with an average Top-1 accuracy of 83.3% and Top-4 accuracy of 90.4%
, which is a significant improvement over both conventional neural
decoders and the popular SHARK2 algorithm. The decoder also runs
in real-time on mobile AR/VR hardware, enabling fluid gesture typing
experiences. The proposed methodology illuminates a promising path
towards universal Gesture2Text decoding that can enable efficient and
expressive communication across new interactive contexts.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456198

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on October 06,2024 at 19:03:59 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Haptic capacitive. https://sensel.com/product/
#haptic-capacitve. 5

[2] Apple vision pro. https://www.apple.com/apple-vision-pro/,
2023. 9

[3] Microsoft hololens. https://www.microsoft.com/hololens, 2023.
9

[4] Use your mac with apple vision pro. https://support.apple.com/
en-ca/118521, 2023. 5

[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org. 4

[6] A. F. Agarap. Deep learning using rectified linear units (relu). ArXiv,
abs/1803.08375, 2018. 4

[7] O. Alsharif, T. Ouyang, F. Beaufays, S. Zhai, T. Breuel, and J. Schalkwyk.
Long short term memory neural network for keyboard gesture decoding.
In 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2076–2080. IEEE, 2015. 1, 2, 3, 7

[8] J. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. ArXiv,
abs/1607.06450, 2016. 4

[9] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for
hyper-parameter optimization. In NIPS, 2011. 4

[10] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models
are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020. 3

[11] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng,
Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li,
X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and
D. Lin. MMDetection: Open mmlab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155, 2019. 2

[12] S. Chen, J. Wang, S. Guerra, N. Mittal, and S. Prakkamakul. Exploring
word-gesture text entry techniques in virtual reality. In Extended Abstracts
of the 2019 CHI Conference on Human Factors in Computing Systems, pp.
1–6, 2019. 2

[13] P. David. Clio and the economics of qwerty. The American Economic
Review, 75:332–7, 05 1985. 9

[14] T. J. Dube and A. S. Arif. Text entry in virtual reality: A comprehensive
review of the literature. In Human-Computer Interaction. Recognition and
Interaction Technologies: Thematic Area, HCI 2019, Held as Part of the
21st HCI International Conference, HCII 2019, Orlando, FL, USA, July
26–31, 2019, Proceedings, Part II 21, pp. 419–437. Springer, 2019. 4

[15] J. J. Dudley, K. Vertanen, and P. O. Kristensson. Fast and precise touch-
based text entry for head-mounted augmented reality with variable oc-
clusion. ACM Transactions on Computer-Human Interaction (TOCHI),
25(6):1–40, 2018. 1, 5

[16] J. J. Dudley, J. Zheng, A. Gupta, H. Benko, M. Longest, R. Wang, and P. O.
Kristensson. Evaluating the performance of hand-based probabilistic text
input methods on a mid-air virtual qwerty keyboard. IEEE Transactions
on Visualization and Computer Graphics, 2023. 1

[17] A. C. Dvorak, N. L. Dealey, and W. L. Merrick. Typewriter keyboard,
1936. Retrieved from Google Patents. 9

[18] M. Freitag and Y. Al-Onaizan. Beam search strategies for neural machine
translation. In NMT@ACL, 2017. 4

[19] M. Gordon, T. Ouyang, and S. Zhai. Watchwriter: Tap and gesture
typing on a smartwatch miniature keyboard with statistical decoding. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, pp. 3817–3821, 2016. 1

[20] A. Graves. Connectionist temporal classification. Supervised sequence
labelling with recurrent neural networks, pp. 61–93, 2012. 3, 4

[21] Y. Gu, C. Yu, Z. Li, Z. Li, X. Wei, and Y. Shi. Qwertyring: Text entry on
physical surfaces using a ring. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 4(4):1–29, 2020. 1

[22] A. Gupta, C. Ji, H.-S. Yeo, A. Quigley, and D. Vogel. Rotoswype: Word-
gesture typing using a ring. In Proceedings of the 2019 CHI conference
on human factors in computing systems, pp. 1–12, 2019. 1, 2

[23] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep

neural network with pruning, trained quantization and huffman coding.
arXiv: Computer Vision and Pattern Recognition, 2015. 2

[24] F. Henninger, Y. Shevchenko, U. K. Mertens, P. J. Kieslich, and B. E.
Hilbig. lab.js: A free, open, online study builder. Behavior Research
Methods, 54(2):556–573, 2022. doi: 10.3758/s13428-019-01283-5 6

[25] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997. 3, 4

[26] F. Kern, F. Niebling, and M. E. Latoschik. Text input for non-stationary
xr workspaces: Investigating tap and word-gesture keyboards in virtual
and augmented reality. IEEE Transactions on Visualization and Computer
Graphics, 29(5):2658–2669, 2023. 1

[27] T. Kim, A. Karlson, A. Gupta, T. Grossman, J. Wu, P. Abtahi, C. Collins,
M. Glueck, and H. B. Surale. Star: Smartphone-analogous typing in
augmented reality. In Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology, pp. 1–13, 2023. 5

[28] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. 4

[29] B. Klimt and Y. Yang. The enron corpus: A new dataset for email clas-
sification research. In European conference on machine learning, pp.
217–226. Springer, 2004. 5, 6

[30] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language
models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022. 3

[31] P. O. Kristensson. Discrete and continuous shape writing for text entry
and control. PhD thesis, Institutionen f"or datavetenskap, 2007. 2

[32] P.-O. Kristensson and S. Zhai. Shark2: a large vocabulary shorthand
writing system for pen-based computers. In Proceedings of the 17th
annual ACM symposium on User interface software and technology, pp.
43–52, 2004. 1, 2, 3, 7

[33] L. H. Lee, K. Y. Lam, Y. P. Yau, T. Braud, and P. Hui. Hibey: Hide the
keyboard in augmented reality. In 2019 IEEE International Conference
on Pervasive Computing and Communications (PerCom, pp. 1–10. IEEE,
2019. 1

[34] L. A. Leiva, S. Kim, W. Cui, X. Bi, and A. Oulasvirta. How we swipe:
a large-scale shape-writing dataset and empirical findings. In Proceed-
ings of the 23rd International Conference on Mobile Human-Computer
Interaction, pp. 1–13, 2021. 1, 2, 3, 4

[35] C. Liang, C. Hsia, C. Yu, Y. Yan, Y. Wang, and Y. Shi. Drg-keyboard:
Enabling subtle gesture typing on the fingertip with dual imu rings. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., 6(4), article no. 170,
30 pages, jan 2023. doi: 10.1145/3569463 1, 6

[36] H. Liang, J. Yuan, D. Thalmann, and N. M. Thalmann. Ar in hand: Ego-
centric palm pose tracking and gesture recognition for augmented reality
applications. In Proceedings of the 23rd ACM international conference on
Multimedia, pp. 743–744, 2015. 5

[37] I. S. MacKenzie and R. W. Soukoreff. Phrase sets for evaluating text entry
techniques. In CHI’03 extended abstracts on Human factors in computing
systems, pp. 754–755, 2003. 5, 6

[38] I. S. MacKenzie and S. X. Zhang. The design and evaluation of a high-
performance soft keyboard. CHI ’99, 7 pages, p. 25–31. Association for
Computing Machinery, New York, NY, USA, 1999. doi: 10.1145/302979.
302983 9

[39] A. Markussen, M. R. Jakobsen, and K. Hornbæk. Vulture: a mid-air
word-gesture keyboard. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 1073–1082, 2014. 1, 2

[40] Meta. Quest v56 software update: Hand tracking improvements, live
captions, facebook livestreaming, 2023. 4

[41] Meta AI. Pytext: A natural language modeling framework based on py-
torch. https://github.com/facebookresearch/pytext, 2018. Ac-
cessed: insert date here. 4

[42] Meta Platforms, Inc. Oculus Quest Series. https://www.oculus.com/
quest/. Accessed: 2024-03-10. 2, 4, 9

[43] D. Mifsud, A. S. Williams, F. R. Ortega, and R. J. Teather. Augmented
reality fitts’ law input comparison between touchpad, pointing gesture, and
raycast. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces
Abstracts and Workshops (VRW), pp. 590–591, 2022. 4, 5

[44] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
and M. Auli. Fairseq: A fast, extensible toolkit for sequence modeling.
In Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 48–53, 2019. 4

[45] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. https://pytorch.org, 2019.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456198

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on October 06,2024 at 19:03:59 UTC from IEEE Xplore. Restrictions apply.

Accessed: [insert date here]. 8
[46] A. Peshock, J. Duvall, and L. E. Dunne. Argot: A wearable one-handed

keyboard glove. In Proceedings of the 2014 ACM international symposium
on wearable computers: adjunct program, pp. 87–92, 2014. 1

[47] S. Reyal, S. Zhai, and P. O. Kristensson. Performance and user experience
of touchscreen and gesture keyboards in a lab setting and in the wild. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems, pp. 679–688, 2015. 1, 2

[48] J. Shen, J. Dudley, and P. O. Kristensson. The imaginative generative
adversarial network: Automatic data augmentation for dynamic skeleton-
based hand gesture and human action recognition. In 2021 16th IEEE
International Conference on Automatic Face and Gesture Recognition
(FG 2021), pp. 1–8. IEEE, 2021. 4

[49] J. Shen, J. Dudley, and P. O. Kristensson. Simulating realistic human
motion trajectories of mid-air gesture typing. In 2021 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pp. 393–402. IEEE,
2021. 2, 4, 6

[50] J. Shen, J. Dudley, and P. O. Kristensson. Fast and robust mid-air gesture
typing for ar headsets using 3d trajectory decoding. IEEE Transactions on
Visualization and Computer Graphics, 2023. 1, 2, 3, 4, 5, 7, 9

[51] J. Shen, J. Hu, J. J. Dudley, and P. O. Kristensson. Personalization of a
mid-air gesture keyboard using multi-objective bayesian optimization. In
2022 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 702–710. IEEE, 2022. 2, 5

[52] M. Speicher, A. M. Feit, P. Ziegler, and A. Krüger. Selection-based text
entry in virtual reality. In Proceedings of the 2018 CHI conference on
human factors in computing systems, pp. 1–13, 2018. 5

[53] M. Sundermeyer, R. Schlüter, and H. Ney. Lstm neural networks for
language modeling. In Thirteenth annual conference of the international
speech communication association, 2012. 4

[54] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pp. 5998–6008, 2017. 8

[55] K. Vertanen and P. O. Kristensson. Mining, analyzing, and modeling text
written on mobile devices. Natural Language Engineering, 27:1 – 33,
2019. 7

[56] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language
understanding. arXiv preprint arXiv:1804.07461, 2018. 5

[57] Y. Wang, Y. Wang, J. Chen, Y. Wang, J. Yang, T. Jiang, and J. He. Investi-
gating the performance of gesture-based input for mid-air text entry in a
virtual environment: A comparison of hand-up versus hand-down postures.
In Sensors, vol. 21, p. 1582. Multidisciplinary Digital Publishing Institute,
2021. 2

[58] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cis-
tac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von
Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame,
Q. Lhoest, and A. M. Rush. Transformers: State-of-the-art natural lan-
guage processing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pp.
38–45. Association for Computational Linguistics, Online, Oct. 2020. doi:
10.18653/v1/2020.emnlp-demos.6 2

[59] W. Xu, H.-N. Liang, A. He, and Z. Wang. Pointing and selection methods
for text entry in augmented reality head mounted displays. In 2019 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), pp.
279–288. IEEE, 2019. 1, 2

[60] Z. Xu, P. C. Wong, J. Gong, T.-Y. Wu, A. S. Nittala, X. Bi, J. Steimle,
H. Fu, K. Zhu, and X.-D. Yang. Tiptext: Eyes-free text entry on a fingertip
keyboard. In Proceedings of the 32nd Annual ACM Symposium on User
Interface Software and Technology, pp. 883–899, 2019. 1

[61] N. Yanagihara, B. Shizuki, and S. Takahashi. Text entry method for
immersive virtual environments using curved keyboard. In 25th ACM
Symposium on Virtual Reality Software and Technology, pp. 1–2, 2019. 2

[62] C. Yu, Y. Gu, Z. Yang, X. Yi, H. Luo, and Y. Shi. Tap, dwell or gesture?
exploring head-based text entry techniques for hmds. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems, pp.
4479–4488. ACM, 2017. 1, 2

[63] S. Zhai, M. Hunter, and B. A. Smith. The metropolis keyboard-an explo-
ration of quantitative techniques for virtual keyboard design. In Proceed-
ings of the 13th annual ACM symposium on User interface software and
technology, pp. 119–128, 2000. 9

[64] S. Zhai and P.-O. Kristensson. Shorthand writing on stylus keyboard. In
Proceedings of the SIGCHI conference on Human factors in computing

systems, pp. 97–104, 2003. 2
[65] S. Zhai and P. O. Kristensson. The word-gesture keyboard: reimagining

keyboard interaction. Communications of the ACM, 55(9):91–101, 2012.
2

[66] M. Zhao, A. M. Pierce, R. Tan, T. Zhang, T. Wang, T. R. Jonker, H. Benko,
and A. Gupta. Gaze speedup: Eye gaze assisted gesture typing in virtual
reality. In Proceedings of the 28th International Conference on Intelligent
User Interfaces, pp. 595–606, 2023. 1

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456198

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on October 06,2024 at 19:03:59 UTC from IEEE Xplore. Restrictions apply.

