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Fig. 1: RingGesture, a ring-based mid-air gesture typing system, enables users to input text both quickly and accurately. The process
unfolds as follows: a) The process begins when the user articulates their wrist, positioning the cursor over the initial letter of the desired
word. b) Then, the user performs a pinch gesture with their thumb and index finger, marking the start of the cursor’s trajectory. c)
Subsequently, the user gestures the word’s trajectory in mid-air to complete the input by articulating their wrist. d) Upon releasing the
pinch, the deep-learning word prediction framework, Score Fusion, predicts Top-K words, with the Top-1 word being pre-selected.

Abstract—Text entry is a critical capability for any modern computing experience, with lightweight augmented reality (AR) glasses
being no exception. Designed for all-day wearability, a limitation of lightweight AR glass is the restriction to the inclusion of multiple
cameras for extensive field of view in hand tracking. This constraint underscores the need for an additional input device. We propose a
system to address this gap: a ring-based mid-air gesture typing technique, RingGesture, utilizing electrodes to mark the start and end
of gesture trajectories and inertial measurement units (IMU) sensors for hand tracking. This method offers an intuitive experience
similar to raycast-based mid-air gesture typing found in VR headsets, allowing for a seamless translation of hand movements into cursor
navigation. To enhance both accuracy and input speed, we propose a novel deep-learning word prediction framework, Score Fusion,
comprised of three key components: a) a word-gesture decoding model, b) a spatial spelling correction model, and c) a lightweight
contextual language model. In contrast, this framework fuses the scores from the three models to predict the most likely words with
higher precision. We conduct comparative and longitudinal studies to demonstrate two key findings: firstly, the overall effectiveness of
RingGesture, which achieves an average text entry speed of 27.3 words per minute (WPM) and a peak performance of 47.9 WPM.
Secondly, we highlight the superior performance of the Score Fusion framework, which offers a 28.2% improvement in uncorrected
Character Error Rate over a conventional word prediction framework, Naive Correction, leading to a 55.2% improvement in text entry
speed for RingGesture. Additionally, RingGesture received a System Usability Score of 83 signifying its excellent usability.

Index Terms—Text entry, augmented reality, word prediction, language models

1 INTRODUCTION

This paper focuses on one-handed text entry methods, necessitated
by the occasional unavailability of both hands [13, 25, 29, 79], for
lightweight augmented reality (AR) glasses in contrast to fully-fledged
AR headsets (such as Apple Vision Pro [7, 15], Quest Series [48], and
HoloLens Series [14, 49]). We have analyzed prior research on one-
handed text entry and found that most existing methods struggle with a
range of limitations. These limitations include learnability challenges,
lower performance ceiling, and intricate device setup. Learnability
challenges stems from an indirect correlation between hand movement
and keyboard key selection, and the introduction of numerous new
keyboard layouts (with new key arrangements) [23, 25–27, 30, 37, 56].
Additionally, these methods typically demonstrate low entry speeds
below 15 words per minute (WPM). Some other methods also require
intricate device setup procedures that require specific auxiliary devices
like capacitive sensors on the fingertips [53, 75]. Our observations
highlight that gesture typing with the cursor directly mapped from body
movements tends to yield the highest text entry rates, as evidenced
by the systems developed by Markussen et al. [45] using hand control
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(20.6 WPM), Yu et al. [77] using head control (19.0 WPM), and Zhao et
al. [79] using arm control (16.4 WPM). This efficiency can be attributed
to the simplicity and intuitiveness of direct cursor projection combined
with the rapid text entry facilitated by gesture typing. Among these,
Vulture [44] methods offer the highest text entry rates, and are theo-
retically more ergonomic and less fatiguing when compared to using
head and arm. However, they utilized OptiTrack [21] for hand tracking,
an outside-in tracking method that comes with inherent deployment
challenges. It requires the instrumentation of the user’s entire arm to
track movements of the arm, wrist, and fingers, and may at times lose
tracking due to marker occlusion.

Consequently, we leveraged a ring device proposed by Kienzle et
al. [32] to track hand positioning. This ring can track hand movements
using its built-in IMU and detect stateful pinch actions using integrated
electrodes [32]. To this end, we refined our design space to concentrate
on evaluating word-level gesture typing versus phrase-level gesture
typing, the latter being less explored [74]. We conducted a comparative
study with 32 participants. Results showed no significant text entry
performance difference between the two methods, but a preference
for word-level typing emerged. We also tackled the Heisenberg Effect
challenge, associated with input cross modality [72] while performing
mid-air pointing when with the discrete pinch actions, by introducing
a customized filter-based algorithm. Even still, IMU-based tracking
inevitably introduces noise and drift into the cursor’s trajectory, lead-
ing to inaccurate gesture typing decoding. To guarantee swift and
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Study Interaction Device Setup Typing method (QWERTY) Entry Rate (WPM)
Markussen et al. [44] Directly Mapped Cursor - Hand OptiTrack Hand Tracking Gesture Typing 20.6
Yu et al. [76] Directly Mapped Cursor - Head Headset IMU Orientation Gesture Typing 19.0
Zhao et al. [79] Directly Mapped Cursor - Arm Wristband IMU Tracking Gesture Typing 16.4
Gu et al. [26] Direct Touch Ring IMU Tracking Gesture Typing 13.8
Henderson et al. [28] Directly Mapped Cursor - Finger Smartphone Screen Gesture Typing 13.2
Xu et al. [75] Direct Touch On-Fingertip Sensors Touch Typing 11.9
Wang et al. [71] Direct Touch Vicon 3D Hand Tracking Touch Typing 10.0
Chen et al. [41] Direct Touch Ring IMU Tracking Gesture Typing 9.9
Gupta et al. [27] Indirectly Mapped Cursor Ring IMU Tracking Gesture Typing 9.2

Table 1: Summary of previous studies on one-handed text entry methods for QWERTY keyboards, with entry rates near or above 10 WPM. Directly
Mapped Cursor maps hand, head, arm or finger movements to cursor movement with direct projection. In contrast, Indirectly Mapped Cursor
involves an intermediate algorithm between the physical movement and cursor movement. Studies involving Indirectly Mapped Cursor typically
demonstrate text entry rate under 10 WPM. Note that we only report the text entry rate from novice users, as the experimental setup varies among
users when measuring expert performance.

precise gesture typing, we proposed a novel deep-learning word pre-
diction framework, Score Fusion, which predict user’s indented words
based on not only user’s gestured trajectories but also keyboard spatial
information and contextual information from previous conversations.
This framework integrated three crucial components through fusing
the probabilistic scores of word candidates from the components: 1) a
word-gesture decoding model; 2) a spatial spelling correction model;
and 3) a lightweight contextual language model.

We conducted the second user study involving 16 participants
with two primary objectives: 1) to evaluate the effectiveness of the
RingGesture system, and 2) to compare the proposed Score Fusion
algorithm with a conventional word prediction baseline, Naive Correc-
tion, from [63]. The results indicated that, firstly, RingGesture achieves
an average text entry rate of 27.3 WPM and a peak performance of 47.9
WPM. These results are comparable to mobile phone gesture typing
performances, which are near 30 WPM [57]. Secondly, we highlight
the superior performance of the Score Fusion framework, which of-
fers a 55.2% improvement in text entry speed over Naive Correction
(only achieving 17.6 WPM), due to improved word prediction from
the Score Fusion. This underscores the significance of the Score Fu-
sion framework for enabling a fast RingGesture system. Additionally,
RingGesture received a System Usability Score of 83, signifying its
excellent usability.

In conclusion, our contributions are threefold:
1. We propose a fast, accurate and easy-to-learn ring-based mid-

air gesture typing system, RingGesture, which enables users to
perform text entry at rates (average entry rate: 27.3 WPM, novice
entry rate: 26.4, expert entry rate: 32.5 WPM) comparable to
mobile phone gesture typing rate.

2. We propose a novel deep-learning word prediction framework,
Score Fusion, which includes a word-gesture decoding model
enabled by a novel data transformation process, a spatial spelling
correction model enabled by a novel keyboard-layout-aware edit
distance, and a novel pre-trained contextual language model while
still being lightweight.

3. We conducted two studies to understand the value of our design de-
cisions, the RingGesture system, and the Score Fusion framework:
Study 1 to explore word-level gesture typing versus phrase-level
gesture typing under Directly Mapped Cursor interaction mode;
Study 2 to demonstrate the efficiency of RingGesture, and under-
score the significant improvement of the Score Fusion framework
over a conventional word prediction baseline Naive Correction
(28.2% improvement in uncorrected Character Error Rate, leading
to 55.2% improvement in text entry speed).

2 RELATED WORK

Various studies of text entry methods in AR/VR suggest typical entry
rates of 5 to 26 WPM [18, 19, 63, 64, 73]. It is evident that leveraging
users’ existing typing skills with QWERTY keyboards and simple
interactions provides the best performance [17, 20, 33], while abstract
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Fig. 2: 2D cursor control from arm and wrist. The cursor controlled by a
ring is a direct mapping from θ , and the cursor controlled by a wristband
is a direct mapping from φ .

mappings and complex designs hinder text entry rate [30, 38, 40, 51, 67,
78].

2.1 One-Handed Text Entry

This section critically reviews and compares notable one-handed text
entry research. Our focus is narrowed to those methods that have
achieved performance rates near or surpassing 10 WPM and utilize
QWERTY keyboards. Table 1 presents a comparative overview of these
one-handed text entry studies.

Markussen et al. [44] proposed Vulture which is a mid-air gesture
typing keyboard, and utilized OptiTrack hand tracking for Directly
Mapped Cursor control via hand movements, achieving an entry rate
of 20.6 wpm. This method exemplifies high efficiency in text entry
by leveraging intuitive hand movements, closely mirroring physical
interactions in the real world. The direct manipulation facilitated by this
approach suggests a significant potential for enhancing user experience
in AR and VR environments through natural interaction paradigms.
Please note the term Directly Mapped Cursor does not refer to the
fingertip directly touching the keyboard. Instead, Directly Mapped
Cursor refers to the direct mapping between cursor movement and
finger movement, rather than direct physical contact.

Zhao et al. [79] also employed a similar Directly Mapped Cursor
control-based mid-air gesture typing technique, but utilized arm move-
ments instead, incorporating a wristband with in-built IMU to track the
arm’s position. They achieved an entry speed of 16.4 WPM. Despite
introducing the ‘Speedup’ method, which accelerates the cursor to-
wards the user’s gaze fixation point to enhance text entry rate, the final
improved speed reached only 17.1 WPM, which is still significantly
lower than the 20.6 WPM achieved by Vulture [44]. One factor to
this reduced speed is that using the arm for control introduces more
extensive movement, inherently leading to slower speeds. Additionally,
this method results in greater fatigue as more torque is needed for the
arm (α) as compared to the wrist (φ ) because the arm’s greater length,
which then demands more force for the same orientation change (see
Figure 2.).

Similarly, Yu et al. [76] introduced a technique based on head ori-
entation control via a headset to navigate the cursor, with an entry rate
of 19.0 wpm. This method diverges from hand-based interaction by
utilizing head movements for text entry, presenting an alternative that,
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Fig. 3: The conventional word prediction framework, Naive Correction,
operates in a sequential fashion: The predictions from the word-gesture
decoding model are firstly corrected for misspellings by the edit-distance-
based spelling correction model, which functions by calculating the edit
distance with the word candidates in the corpus. The corrected candi-
dates are then re-ranked by an N-Gram language model [31] based on
the previously enter N-1 words.

while effective, introduces a different set of ergonomic considerations
and potential user adaptation challenges.

Another study closely related to our work is RotoSwype by Gupta
et al. [27], which also explores mid-air gesture typing through a ring
device. However, unlike our Directly Mapped Cursor interaction, Ro-
toSwype utilizes an Indirectly Mapped Cursor mode, implementing an
indirect mapping strategy where wrist rotations correspond to cursor
movements. This method, however, presents considerable challenges
in user adaptation due to its non-intuitive mapping system. Gupta et
al. [27] noted, ‘Participants found it difficult at first to understand the
mapping of angular movements to the flat pointer motion on-screen,
especially for diagonal motion.’ Consequently, the text entry speed for
novices was recorded at 9.2 WPM, underscoring the inherent learning
curve associated with this innovative interaction technique.

Additionally, Henderson et al. [28] utilized smartphones for AR
cursor interaction, achieving a 13.2 WPM rate, suggesting mobile tech
integration can ease text entry access. Yet, this contradicts the goal of
AR glasses reducing mobile phone dependence. Similarly, wearable
tech for text entry was explored by Xu et al. [75], Gu et al. [26] and
Chen et al [41], with fingertip and ring-based sensors reaching 11.9
WPM, 13.8 WPM and 9.9 WPM, respectively. These methods present
innovative, albeit less adaptable AR interaction solutions.

The top 3 text entry methods in Table 1 are based on the Directly
Mapped Cursor-based mid-air gesture typing approach. However, each
method has its drawbacks. Vulture [45] relies on OptiTrack for hand
tracking which is a ‘Wizard-of-Oz’ technique, Yu et al. [77]’s system
uses head movements for cursor control, which introduces ergonomic
challenges, and Zhao et al. [79]’s system can cause arm fatigue due to
the involvement of whole arm movements. Our system, RingGesture,
improves upon Vulture [45]’s mid-air gesture typing approach by using
a ring equipped with Inertial Measurement Units (IMUs), allowing
for cursor control through hand movements alone. Recognizing that
IMUs may lead to noise and drift, resulting in inaccurate cursor control
and subsequently inaccurate word-gesture decoding, we proposed a
deep-learning word prediction framework, Score Fusion, to enhance
word prediction accuracy, thereby increasing the rate of text entry.

2.2 Word Prediction in Text Entry

Word prediction in text entry systems involves word decoding, spelling
correction, and language modeling. The decoding model interprets the
user’s input patterns into raw predictions, forming a sequence of charac-
ters, but it may introduce spelling errors. The spelling correction model
rectifies these inaccuracies, while language modeling further enhances
word prediction by considering the context provided by previous words.
Shen et al. [63] connect these components sequentially, as illustrated in
Figure 3. The word prediction system, referred to as Naive Correction
in this paper, enhances accuracy through a sequential process involving
edit-distance-based spelling correction and N-Gram language model
re-ranking. Despite this system being the state-of-the-art word predic-
tion framework for gesture typing, it has several drawbacks: it only
considers limited contextual scope, ignoring global probabilities across
the entire dataset. Additionally, it lacks deep semantic understanding,
leading to potential inaccuracies in certain contexts. We propose a
novel word prediction system that integrates correction and language

modeling through a probabilistic approach, allowing the system to
consider global probabilities rather than processing them sequentially.
Additionally, our approach enhances spelling correction by incorporat-
ing spatial information from the keyboard and advances the N-Gram
language model by utilizing much longer contexts, while maintaining a
lightweight design.

General spelling correction encompasses a wide array of contexts, in-
cluding document editing and processing digital texts in databases or on
online platforms. Its primary objective is to identify and correct errors
throughout entire sequences of words [8, 12, 54]. In contrast, spelling
correction in text entry systems on mobile devices is specifically tai-
lored for real-time user inputs. It focuses on correcting errors in single
words as they are typed, where the errors not only come from users
but also from text decoders in a probabilistic text entry system [20].
Spelling correction in text entry systems commonly relies on the edit
distance method, prized for its ease of integration with custom word
corpora and modifications to achieve microsecond latency [36, 50].
However, its accuracy for QWERTY-based text entry systems is lim-
ited [8]. One of the major reasons is that it fails to consider the spatial
information of the keyboard. This oversight leads to reduced correc-
tion accuracy by offering phonetically or orthographically similar but
irrelevant corrections, and to inefficient error prediction due to the
inability to accurately anticipate mistyped words based on common
finger movements and miskeying patterns, thus diminishing its overall
effectiveness. Our paper addresses this gap by proposing a novel spa-
tial edit distance that incorporates the spatial information of a gesture
typing keyboard. Additionally, we transformed the spatial edit distance
into a probabilistic-based measure, allowing seamless integration with
a probabilistic word decoder.

Language modeling represents another important approach for en-
hancing word error correction. N-gram language models are commonly
utilized for meeting latency demands owing to their ease of imple-
mentation and explainability [31, 52]. With the advancements in deep
learning technologies, models based on deep learning have been pro-
gressively incorporated into language modeling [9, 22, 68]. However,
there has been limited research on contextual language modeling for
text entry systems. Contextual information is a crucial element in text
entry, which includes elements such as conversation history and other
context tags like places, times, and hobbies of the users, etc. Shen et
al. [65] proposed for the first time a contextual language model based on
GPT-2 for Augmentative and Alternative Communication (AAC) use
cases. However, the Generative Pre-trained Transformer-2 (GPT-2) [55]
model has significant latency when operated on a mobile device, while
this latency is acceptable for the AAC use case in Shen et al. [65]. We
propose a novel method that transforms contextual language modeling
through pre-training with Long Short Term Memory (LSTM) models
instead of pre-training with transformers. This results in a lightweight
model architecture, with the final contextual language model being
only 7 megabytes (MB) in size and capable of running in real-time on
a mobile device.

3 USER STUDY 1: WORD-LEVEL VERSUS PHRASE-LEVEL
GESTURE TYPING

We began by investigating whether the simple act of removing the de-
limitation requirements between words could accelerate mid-air gesture
input under the Directly Mapped Cursor interaction mode. As we are
proposing a novel and comprehensive text entry system that ranges
from interaction design to backend architecture design, the choice be-
tween word-level and phrase-level typing is a fundamental component
of the interaction design. Therefore, it is important to conduct a study
to explore this aspect.

While Xu et al. [74] have conducted studies comparing phrase-level
to word-level gesture typing on smartphones, their approach relies on
Direct Touch. This differs from our Directly Mapped Cursor mode.
Consequently, Xu et al.’s findings [74] may not be directly applicable to
our context. Therefore, we conducted our own study using a touchpad
to simulate Directly Mapped Cursor interaction. Controlling a cursor
by swiping on a touchpad directly translates fingertip movements into
cursor movements on the screen. This method is particularly advanta-

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456179

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on October 06,2024 at 19:09:52 UTC from IEEE Xplore.  Restrictions apply. 



geous because it provides an accurate representation of our swipe path,
serving as the ground truth. In contrast, most other methods, such as
those based on inertial measurement units (IMUs) or camera tracking,
introduce noise, detracting from the fidelity of tracking. Thus, using
a touchpad enables us to simulate perfect tracking, which is crucial
for the precision required in our comparisons of gesture typing at the
phrase level and at the word level within this Directly Mapped Cursor
interaction mode. The following are the details of the study:

1. Participants: We recruited 32 volunteers as participants through
an internal mailing list, who had an average age of 33 (range 18-64,
standard deviation 10.91). The group comprised 18 males, 13 females,
and 1 participant who chose not to disclose their gender. 27 participants
are right-handed, and 5 participants are left-handed.
2. Apparaturs: Participants controlled a cursor using a Sensel Touch-
pad [2] placed on the table in front of a monitor, with the cursor dis-
played on a virtual keyboard on a monitor. The monitor was connected
to a Lenovo PC (ThinkStation) equipped with an Intel Xeon processor.
3. Phrase Set: The phrase set used was collected from two sources:
the Enron Mobile Corpus [34] and the MacKenzie phrase set [43]. This
combined phrase corpus encompassed a total of 42,612 unique phrases.
Each phrase in this corpus exhibited an average length of 5.3 words,
with a minimum length of 2 words and a maximum length of 7 words.
4. Procedure: Participants in the study were directed to execute tasks
under two distinct conditions: gesture typing at the word level and at
the phrase level. To ensure impartiality, these conditions were counter-
balanced. Each condition consisted of 40 phrases, selected uniformly
from the aforementioned phrase set. Under word-level gesture typing,
participants are instructed to delimit after swiping for each word by
lifting up the finger from the touchpad. In contrast, under phrase-level
gesture typing, participants are instructed to delimit only when the
entire phrase is completed. We implemented a pseudo-decoder, based
on the model proposed by Shen et al. [62], that simulates an ideal
decoder. This decoder predicts correct words as long as at least 70% of
the gesture trajectory passes through the designated tolerance region for
each character in the swiped word or phrase. To simulate the decoder’s
capability to manage ambiguous inputs effectively, the key region is
defined to be four times larger than the actual size of the keys. Before
starting each condition, participants were allowed to practice with 5
phrases. During the condition, participants could rest for up to 2 min-
utes after every 10 phrases. To advance to the next phrase, participants
press the Space Bar button on the keyboard. At the end of the study,
participants were invited to fill out a post-study questionnaire. This
included a Likert scale rating on various aspects for both word-level
and phrase-level gesture typing: 1) Easy to Type, 2) Easy to Learn,
3) Fast to Type, 4) Prediction is Accurate, 5) Hand Feels Fatigued, 6)
Eyes Feel Fatigued. Additionally, participants were asked the following
open-ended question: ‘Between word-level typing and phrase-level
typing, did you find one method superior to the other? If so, which one
and why?’ Each condition for one participant took around 30 minutes
to complete.
5. Evaluation Measures: We report the results of the studies using
the following metrics:
• Words Per Minute (WPM) is represented mathematically as:

WPM =
Total Words Typed
Time in Minutes

• Character Error Rate (CER) can be quantified using the formula:

Minimum Number of Insertions, Deletions, and Substitutions
Length of Stimulus Text

• Uncorrected Character Error Rate (Uncorrected CER) and Corrected
Character Error Rate (Corrected CER) are defined for the predicted
text output before and after correction interventions, respectively,
with corrections including word deletions and re-entries, as follows:

Uncorrected CER =
Number of Errors in Initial Prediction

Length of Stimulus Text
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Fig. 4: Violin plots of answers to subjective rating questions scored on 5-
point Likert scales. Violin plots are modified box plots that add estimated
kernel density plots to the summary statistics displayed by box plots.
The 5-point Likert scales ranged from 1 (strongly disagree) to 5 (strongly
agree).

Corrected CER =
Number of Errors After Corrections

Length of Stimulus Text

Initially, our analysis revealed no significant difference in text entry
speed between word-level and phrase-level gesture typing, which were
measured at 24.7 WPM and 25.5 WPM, respectively, accompanied
by uncorrected character error rates of 7.8% and 9.2%. To further
explore the impact of typing conditions on text entry speed and accuracy,
we performed an ANOVA analysis. The findings from this analysis
indicated that there were no significant differences in both text entry
speed (F= 2.14, p = 0.13) and accuracy (F = 1.89, p = 0.24) across
the two conditions. This underscores the similarity in performance
between word-level and phrase-level gesture typing in terms of both
speed and precision.

Then we analyze the subjective feedback collected from the post-
study questionnaire.

• Ratings on Six Aspects: Figure 4 illustrates a comparison between
phrase-level and word-level input methods across various aspects.
Observing the shapes and distributions, Phrase-level input generally
have a broader spread in ratings for ease of typing and learning,
which indicate a more varied user experience. Word-level input, on
the other hand, score consistently higher for being perceived as fast
to type and having accurate predictions, with ratings clustered around
higher medians, suggesting users may find it more efficient in these
respects. When it comes to fatigue, both hand and eye fatigue are
reportedly lower with word-level input, as reflected by the denser
concentration of lower ratings. Overall, while there’s some overlap
in user responses, the data suggests a preference for word-level input
in terms of speed, accuracy, and reduced fatigue.

• Preferences: We further analyze the responses of participants re-
garding their preference between word-level typing and phrase-level
typing. There were 19 participants who explicitly favored word-level
typing. The reasons include: 1) Familiarity (6 mentions): Word-
level typing is more similar to traditional typing methods, where each
word is separated by ‘hitting the spacebar’. 2) Cognitive Load (5
mentions): Some users mentioned that their brains think in terms
of words rather than phrases, making word-level typing more nat-
ural. 3) Less Fatigue (3 mentions): Some respondents indicated
that word-level typing is less tiring because it doesn’t require the
user to hold and drag for long periods. 4) Feedback (2 mentions):
Users get immediate feedback after typing each word, which helps
them correct errors on the go. 5) Coordination (3 mentions): A
few respondents found it easier to coordinate their eyes and hands
while typing at the word level. However, 8 participants preferred
phrase-level typing. The reasons include: 1) Efficiency (3 men-
tions): Phrase-level typing allows users to type longer sentences
more quickly, as it eliminates the need to delimitate between words.
2) Convenience (3 mentions): Users found it convenient that phrase-
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level typing automatically segmented the words on their behalf. 3)
Accuracy (2 mentions): Some users found phrase-level typing more
accurate. Finally, 5 respondents did not express a clear preference
for either word-level or phrase-level typing.

Given that phrase-level gesture typing did not yield any notable
enhancements over word-level gesture typing as indicated, coupled
with the fact that a larger user base preferred the latter, we opted for
word-level gesture typing.

4 RINGGESTURE

Study 1 investigated the interaction design of the RingGesture system.
This section provides a comprehensive overview of the backend archi-
tecture design of the RingGesture system. It includes the algorithm
designed to overcome the Heisenberg Effect challenges associated with
input cross modality while performing mid-air pointing when with the
discrete pinch actions [72], and our novel deep-learning word prediction
framework, Score Fusion.

4.1 Ring-Based Mid-Air Pointing and Selection
We created a ring device with a reference design from ElectroRing pro-
posed by Kienzle et al. [32]. This ring detects touch and release events
of a pinch gesture by monitoring changes in an electrical signal. Fur-
thermore, the ring uses an IMU for 2D cursor tracking by transforming
accelerometer and gyroscope data into quaternions, converting these
into polar coordinates, and then mapping them to Cartesian coordinates.
The gain parameter for the control display is set to 1.8.

While we effectively utilize the ElectroRing design [32] for pinch
detection and IMU-based 2D cursor tracking, our system encountered
a challenge in the context of mid-air gesture typing: Heisenberg Effect
associated with input modality crosstalk [72]. This issue arises when a
discrete input like a pinch inadvertently alters the virtual cursor’s posi-
tion, resulting in an inaccurate selection point during mid-air pointing
and selection interactions.

Therefore, to counteract the abrupt displacement introduced by pinch
actions, we suggest a filter-based strategy. This approach dynamically
determines the filtering level within an exponential smoothing filter by
resolving the subsequent optimization problem:

α0 = argmin
α

λσ

√
α

2−α︸ ︷︷ ︸
Noise rejection

+(1−λ )
(1−α)∆

α︸ ︷︷ ︸
Tracking error

 ,

In this equation, σ signifies the level of sensing noise, ∆ provides
an estimate of the signal’s velocity, and λ serves as a parameter that
balances noise rejection (the left term in the minimization above) and
infinite horizon tracking error in response to an input ramp (the right
term in the minimization above). The λ parameter is preset to 0.75
with preliminary experiments.

4.2 Score Fusion
To mitigate the issues posed by input signal noise, such as hand jitter
and IMU drift that lead to inaccuracies in word-gesture decoding, we
have developed a deep-learning framework for word prediction, Score
Fusion. This framework consists of three distinct components that
compute the logarithmic probability of a word within a corpus based
on a given word-gesture trajectory, as illustrated by Figure 5. These
individual scores are then consolidated to provide a composite score
for the words across the corpus. Subsequently, we reorder these scores
to present the highest-ranked words as the suggested options.

4.2.1 Word-Gesture Decoding Model
Deep-learning-based decoders [6, 63] have demonstrated significant
advancements over traditional shape-matching-based decoders [35].
Motivated by these advancements, we aimed to train a deep-learning-
based decoder tailored to our specific use case. However, deep learning

Gesture
Decoding

Model

Spatial Spelling
 Correction Model

Contextual
Language Model

Score Fusion (allocate combined scores to words in the
corpus)

Suggested Word

Rerank Words

 Context Input, 
Previously Entered Text

Word-Gesture
Trajectory

Fig. 5: Our novel deep-learning word prediction framework, Score Fusion,
operates in an integrated fusion process: This fusion process evaluates
each word suggestion by considering its initial decoding score, its likeli-
hood of being a spatial spelling correction, and its contextual relevance.
The resulting blended score aims to ensure that the final suggestions
are derived from an accurate word-gesture decoding model while also
being enhanced for typographical precision, keyboard-layout-awareness,
and contextual relevance.
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Fig. 6: The novel process of converting word-gesture trajectory data
from one keyboard layout to another. It demonstrates an example of a
trajectory (for the word ‘available’) that undergoes both temporal and spa-
tial transformations. The keyboard layouts vary in terms of key spacing,
bottom row shifts, and the presence or absence of the apostrophe key.

models necessitate a substantial volume of training data to avoid over-
fitting. To address this challenge, we utilized a large-scale, publicly
available gesture typing dataset, How We Swipe Dataset [39]. Given
that this dataset was collected from a different keyboard layout, we
proposed a novel method to transform the trajectories to match our
customized keyboard layout as follows:

• Training Dataset: How We Swipe Dataset [42] is a large-scale
gesture typing dataset that was collected via a web-based custom
virtual keyboard, involving 1,338 users who submitted 11,318 unique
English words. However, the dataset used a keyboard layout cus-
tomized to a mobile phone. Our preliminary analysis revealed that
merely normalizing the trajectory data by dividing it by the key-
board’s width and height leads to training data that is not viable for
effective use. Therefore, we employ a novel transformation method
which is a piecewise affine transformation to transform the dataset to
our keyboard layout.

• Piecewise Affine Transformation: This transformation process,
illustrated by Figure 6, adjusts the swipe path onto a standard key-
board layout (known as the model layout) before it is processed by
the model. This transformation relies on two corresponding sets of
anchor points, one set on the input layout and another on the model
layout. In our approach, these anchor points include 1) the central
points of all keys that have the same labels across layouts, and 2)
an additional six anchor points surrounding the keyboard, each po-
sitioned three key distances from the English-letter region’s border
(denoted by ‘TL’, ‘ML’, ‘BL’, etc. in Figure 6). These additional
points are crucial for adjusting for swipe paths that extend beyond
the keyboard border. Once we’ve established the anchor points, the
area they cover is partitioned into a grid. Within each grid subregion,
which is enclosed by four nearby anchor points, spatial coordinates
are modified in a manner akin to perspective transformation seen in
photo editing. This transformation method improves the test accu-
racy of a word-gesture decoding model, on the word-level gesturing
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dataset collected from Study 1, by 76% compared to when using train-
ing data processed through the previously mentioned normalization
method.

• Training Model: We build our gesture decoding model using
the Attention-Enhanced Bi-directional LSTM with CTC loss (AE-
BLSTM-CTC) architecture proposed by Shen et al. [63]. Then we
trained our model on the previously transformed dataset. We used
the same training hyperparameters as in Shen et al. [63]. The training
hyperparameters for the word-gesture decoding model is directly
adopted from Shen et al. [63].

4.2.2 Spatial Spelling Correction Model
The word-gesture decoding model is a character-level model that pre-
dicts the probability of classes (26 characters plus the blank class) at
each timestep of the input trajectory sequence. As such, the prediction
may contain spelling errors, caused by noise from the model as well
as from the user’s input, thus necessitating an auto-correction model
to correct the misspelled words. Therefore, we propose a probabilistic
edit distance that incorporates keyboard spatial information to address
these shortcomings. The computation of this spatial-aware probabilistic
edit distance involves three steps:

1. Calculation of the insertion probability Pinsert(i). This probability
measures the likelihood of an insertion at the i-th position of the input
string. If the insertion occurs at the end of the input, the probability
is log(1), otherwise, it is equivalent to the omission probability Pomit .
Pomit represents the probability that a user omits a character when
typing. This is modeled as a logarithmic probability with a base value
of 0.06, yielding a logarithmic probability of -1.22.
2. Calculation of the deletion probability Pdelete(i). This probability
measures the likelihood of a deletion at the i-th position of the intent
string and is equivalent to the stray probability Pstray. Pstray represents
the probability that a user accidentally adds an extra character. This
is also modeled as a logarithmic probability with a base value of 0.06,
yielding a logarithmic probability of -1.22.
3. Calculation of the substitution probability Psub(i, j). This proba-
bility measures the likelihood of a substitution at the i-th position of
the intent string and the j-th position of the input string. If the i-th
character of the intent string is equal to the j-th character of the input
string, the substitution probability is log(1). Otherwise, the substitution
probability is equivalent to the substitution probability Psub. Psub repre-
sents the probability that a user substitutes one character for another.
This measure differentiates between adjacent keys and non-adjacent
keys on the keyboard. For adjacent keys (e.g., ‘q’ and ‘w’), the base
probability is 0.17, yielding a logarithmic probability of -0.77. For
non-adjacent keys, the base probability is 0.01, yielding a logarithmic
probability of -2.

We obtain the base probability through an estimation of character
error rates on publicly available experiment data from a mid-air gesture-
typing keyboard [63]. The spatial-aware probabilistic edit distance is
then calculated as a composite function of these probabilities:

PED = Pnins
omit ·P

ndel
stray ·Psub(s1) ·Psub(s2)

Taking the logarithm of both sides, we get:

log(PED) = nins · log(Pomit)+ndel · log(Pstray)

+ log(Psub(s1))+ log(Psub(s2))

where nins and ndel denote the number of insertions and deletions,
respectively, and s1 and s2 denote the substitutions.

4.2.3 Contextual Language Model
We employed a bi-directional LSTM (Bi-LSTM) [24, 58, 60] model
to generate predictions of subsequent word based on previous tokens.
The input and output of the model are illustrated in Figure 7. Our
model structure comprises four key components: an embedding layer,
a representation layer, a decoder layer, and a contextual encoder.

Hey how are you

Model Input

hi thank you for{“ locale ”：US ,“ time ”: 9am} 

Word
Embedding

Next
Word

Prediction
{“ reaching ”：0.5 ,“ your ”: 0.3, ...}

Dense
Feature

LSTM

Output
Probability

Context
Word

Embedding

Context
Representation

Average
Pooling

Fig. 7: Contextual LSTM-based language model structure, with model
input including a) previous conversation history (eg. ‘Hey how are you’),
b) context tags (eg. ‘location’: US, ‘time’:9am), c) previously entered
text (eg. ‘hi thank you’). This model predicts the next word based on
probabilities. It assigns a probability to each word in the corpus; for
example, the probability of ‘reaching’ is 0.5, ‘your’ is 0.3, and there are
smaller probabilities for many other words.

Language Model Architecture Perplexity
Baseline Bi-LSTM LM 70.91
Contextual Bi-LSTM LM 42.82
Pre-trained Contextual Bi-LSTM LM 37.16

Table 2: Experiments for contextual language model. Perplexity is a
measure of how well a probability model predicts a sample, with lower
values indicating better predictive accuracy.

1. Embedding Layer: We utilize a Convolutional Neural Network
(CNN) [70] for our embedding layer with an embedding dimension of
38, 100 kernels of size 3. We opted against using dilation and weight
normalization [59] in the CNN to retain the original characteristics
of the input data. These hyperparameters were determined through a
grid-search-based hyperparameter optimization process.
2. Representation Layer: For this layer, we employ a BiLSTM. Our
BiLSTM has two layers and a dimension of 2048. We incorporate a
dropout of 0.001 to prevent overfitting.
3. Decoder Layer: The final layer of our model is an MLP decoder.
This layer transforms the high-level features learned by the previous
layers into the final output. Our MLP has a hidden dimension of 1024
and leverages ReLU as the activation function. A dropout rate of
approximately 0.00092 is used to further mitigate overfitting.
4. Contextual Encoder: To efficiently incorporate long context infor-
mation, we introduced a contextual encoder. This encoder first performs
average pooling on the context word embeddings and then concatenates
these with the word embeddings. The contextual encoder is co-trained
with the remaining language model (LM) modules.

We employ perplexity, as defined by [61], to assess the performance
of language models. This metric is calculated as the exponentiation
of the average negative log-likelihood of the test set words, normal-
ized by the number of words. As evident from Table 2, integrating
contextual information significantly enhances model perplexity. Fur-
thermore, pre-trained language models, as highlighted by [16] and [69],
demonstrate exceptional utility in scenarios where training data is sig-
nificantly limited. Our approach involved initially pre-training the
language model using diverse sources such as public comments and
posts [1, 3–5], followed by fine-tuning on the training dataset outlined
by [65]. As demonstrated in Table 2, the pre-trained contextual lan-
guage model substantially outperforms basic models, thereby validating
the effectiveness of pre-training coupled with subsequent fine-tuning.
After quantization, the final exported contextual language model is only
7MB, enabling real-time execution on contemporary mobile phone
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Algorithm 1 Score Fusion
Require: Trajectory, SwipeCorrectionCoeff, LmCoeff, NumSuggestions, vo-

cab, context
Ensure: Sorted suggestions
1: raw_decodings←WordGesture_Decoder(Tra jectory)
2: Initialize suggestions as an empty dictionary
3: for each raw_word, raw_score in raw_decodings do
4: text_probabilities←Context_Language_Model(context)
5: typo_probabilities← Spatial_Spelling_Correction(raw_word)
6: for i in 0 to len(typo_probabilities)−1 do
7: correction← vocab[i]
8: index← f ind(correction,vocab)
9: lm_score← text_probabilities[index]

10: blended_score ← (1 − SwipeCorrectionCoe f f − LmCoe f f ) ∗
raw_score + LmCoe f f ∗ lm_score + SwipeCorrectionCoe f f ∗
typo_probabilities[i]

11: if correction in suggestions then
12: blended_score←max(suggestions[correction],blended_score)
13: suggestions[correction]← blended_score
14: sorted_suggestions← sort(suggestions,byValue,descending)
15: if NumSuggestions < len(sorted_suggestions) then
16: sorted_suggestions← sorted_suggestions[0 : NumSuggestions]

return sorted_suggestions

Fig. 8: Experiment Setup for Study 2: A participant is seated in front of
a monitor, wearing a ring on their index finger. They can comfortably
rest their arms on the armrests of the chair and freely move their wrist to
perform mid-air gesture typing.

processors.

4.2.4 Implementation Details
We use PyText [47] to implement the contextual language model. We
employ the Adam optimizer to train our model, with a learning rate
of 0.001, epsilon of 1e-8, and weight decay of 0.00001. The model is
trained for a total of 25 epochs, with an early stopping criterion set after
5 epochs. We accumulate gradients over 4 batches before updating
the model parameters, and each epoch consists of 4700 such batches.
Our model is designed to leverage distributed training with a world
size of 8, effectively utilizing multiple GPUs to speed up the training
process. The Score Fusion framework combines the log probabilities
from the three models to assign a score to each word, creating a list of
suggestions. More specific details are illustrated by Algorithm 1.

5 USER STUDY 2: LONGITUDINAL EVALUATION OF RINGGES-
TURE

Our second study was driven by two primary objectives. First, we
compared two text entry conditions: one that used Score Fusion when
entering phrases and another that used Naive Correction. Second, we
evaluated the potential text-entry performance of RingGesture, which
involved assessing both the users’ initial proficiency and their progress
over time. Through the analysis of the learning curve, we aimed to gain
a deeper understanding of the system’s usability and the time required
for users to reach proficiency.

1. Participants: We recruited 16 volunteers as participants through an
internal mailing list. The details of their demographics are listed below.
13 participants are right-handed, and 3 participants are left-handed. The

ages of the participants ranged from 21 to 49.5 years, with an average
age of 37.72 years. The standard deviation in the age distribution was
10.30 years. In terms of gender, 6 participants (37.5%) identified as
male, 9 participants (56.25%) identified as female, and 1 participant
(6.25%) preferred not to disclose their gender. Among the participants,
12 (75%) reported they would be wearing the device on their right
arm, while the remaining 4 (25%) would wear it on their left arm.
When asked about the frequency of using gesture typing, 5 participants
(31.25%) reported always using it (at least once a day), 7 participants
(43.75%) sometimes (at least once a week), 2 participants (25%) seldom
(less than once a month), and the remaining 2 participants never used
it.
2. Phrase Set: The studies utilize the phrase set derived from the Con-
vAI2 challenge dataset [11], which consists of a total of 42,612 unique
phrases. Each unique phrase is accompanied by two additional ele-
ments: context tags, which include speaker persona, and conversation
history. For example, one unique phrase in the dataset might be ‘I read
books in the afternoon.’ This phrase would be accompanied by context
tags such as ‘love reading’ for speaker persona, and a conversation his-
tory element like ‘How are you?’. The dataset’s unique characteristics,
namely its conversational basis and inclusion of persona information,
make it an ideal tool for evaluating the contextual capabilities of in-
telligent text entry systems. In the study, the contextual information,
which is pre-defined with the stimulus phrase, is fed automatically as
additional input to the word error correction frameworks. Allowing par-
ticipants to freely enter text and use their own conversational language
necessitates a large-scale, in-the-wild study to ensure a fair comparison
between the two conditions. However, our current implementation
of the ring device does not support running such a large-scale study
in a natural setting for the comparison of these two conditions. By
pre-establishing the conversational context, our study offers valuable
insights into the realistic text entry rates of upcoming systems that will
account for the historical context of use.
3. Apparatus: Participants controlled the cursor using the ring, and the
cursor was displayed on a virtual keyboard on a monitor. The delimita-
tion is performed when detecting a pinch. The monitor was connected
to a Lenovo PC (ThinkStation) equipped with an Intel Xeon proces-
sor. We chose a computer over AR glasses to allow demonstrators and
participants to view the same screen. This setup enabled participants
to pose questions and receive immediate feedback about the on-screen
scenes, and provided a more effective platform for demonstrators to
explain the swiping and delimitation techniques during the practice
stage.
4. Baseline: Naive Correction acts as the baseline in this study. It is a
state-of-the-art word prediction framework for gesture typing that was
used in Shen et al. [63], as illustrated by Figure 3.
5. Procedure: Each participant was seated before a computer screen
displaying a keyboard interface as illustrated in Figure 8. Participants
initially practiced with a set of 5 phrases, during which they were
encouraged to ask any questions. Subsequently, they completed four
sessions, each consisting of four blocks. Each block contained two
conditions: with Score Fusion and with Naive Correction. In each
condition, participants input 10 phrases, resulting in a total of 20 phrases
per block. The conditions were counterbalanced, and the sessions were
scheduled across two weeks on separate days. In each of the four
sessions, participants were given time to familiarize themselves with
the functionality of RingGesture before beginning their typing. During
each session, participants were instructed to type the phrases ‘as swiftly
and accurately as possible, as if typing an email to a colleague.’ A break
of up to three minutes was allowed between each block of 20 phrases.
Similar to Study 1, we also use Space Bar to proceed to the next
phrase. The average duration of each session was approximately 30
minutes. At the end of the study, participants were invited to complete
a post-study questionnaire similar to Study 1. This included a Likert
scale rating on the same six aspects in study 1: Ease of Typing/Effort,
Ease of Learning, Perceived Speed, Perceived Accuracy, Hand Fatigue
and Eye Fatigue/Attention Switch. Additionally, participants were
requested to complete a standardized System Usability Score form [10].
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Fig. 9: Box plots depicting mean, median and quartiles of the participants’
performance including corrected and uncorrected character error rates
under the two conditions.
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Fig. 10: Comparative analysis of Score Fusion and Naive Correction
conditions over 16 longitudinal blocks.

Finally, they were posed the open-ended question: ‘Did wearing the
ring influence your swipe behavior or task performance?’

5.1 Performance Analysis
5.1.1 Error Rate Analysis
Figure 9a and Figure 9b shows that Score Fusion also has a lower and
more consistent uncorrected and corrected CER compared to Naive
Correction, indicating it’s a more effective method for error prevention
before correction is even applied and thereby reducing errors. Overall,
Score Fusion outperforms Naive Correction by 28.2% in uncorrected
CER, and 29.0% in corrected CER.

5.1.2 Entry Rate Analysis
Figure 10 illustrates the performance of the RingGesture system when
coupled with the Score Fusion framework. The system achieved an
average entry rate of 27.3 words per minute (WPM), starting at 26.4
WPM in the initial block and rising to 32.5 WPM in the final block.
This progression showcases the improvement from novice to expert
levels of performance.

Figure 11a indicates that Score Fusion shows a higher median entry
rate and a tighter interquartile range compared to Naive Correction,
suggesting it enables faster text entry and provides more consistent
performance across different blocks or users. Figure 11b demonstrates
a general trend of increasing entry rates with more frequent use. The
spread of entry rates (as shown by the interquartile ranges and outliers)
also seems to generally decrease with more experience, indicating that
users become not only faster but also more consistent with practice.

Additionally, we use Repeated Measures ANOVA (RM-
ANOVA) [46] and the power law of learning [66] to analyze gesture
typing performance under two conditions: Score Fusion and Naive
Correction. RM-ANOVA is chosen for its efficacy in handling
within-subject variance across repeated observations, allowing us to
assess the impact of the two conditions over time and the consistency
of participant performance. We also use the power law of learning to
get insight into improvement rates and learning dynamics, improving
our understanding of how participants adapt to each condition.
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Fig. 11: Box plots depicting mean, median, and quartiles of the text
entry rate performance in Study 2 showing overall entry rates (a) and by
self-assessed experience level (b).

Factor F Value Num DF Den DF Pr > F
Condition 30.276 1.000 7.000 0.001
Block 4.108 15.000 105.000 0.000
Condition:Block 1.333 15.000 105.000 0.196

Table 3: ANOVA-RM results for assessing the impact of condition and
block on the text entry rate across repeated measures.

• Between Condition: The RM-ANOVA analysis revealed a significant
main effect of condition (F=30.276, p=0.001), indicating a substan-
tial difference in typing performance between the Score Fusion and
Naive Correction conditions. This statistical significance is further
indicated by the performance metrics, where Score Fusion exhibited
a mean text entry rate of 27.3 WPM, outperforming Naive Correc-
tion’s mean of 17.6 WPM. This difference translates to a notable
55.2% improvement in favor ofScore Fusion, emphasizing not just a
statistical but a practical superiority in typing efficiency.

• Between Blocks: Additionally, the RM-ANOVA showed a significant
effect for blocks (F=4.108, p=0.000), suggesting variability in typing
performance over time which could be caused by learning effects,
yet no significant interaction between condition and block (F=1.333,
p=0.196) was observed, indicating that the performance advantage of
Score Fusion is consistent across different time points. This consis-
tency, backed by Score Fusion’s superior statistics (with a standard
deviation of 5.9, minimum of 16.1, and maximum of 47.9) compared
to Naive Correction’s (standard deviation of 4.7, minimum of 7.4,
and maximum of 31.5), highlights how different word prediction
frameworks in gesture typing not only influence overall performance
but also ensure sustained efficiency across blocks.

• Power Law of Learning: As there is a significant variability in typing
performance over time, we analyze the learning dynamics through
the power law of learning for Score Fusion and Naive Correction
conditions. Figure 10 also plots the power law of learning for the two
conditions. We find distinct patterns in participants’ improvement
rates. The R-squared values are 0.415 for Score Fusion, and 0.697
for Naive Correction, suggesting that learning under Naive Correc-
tion is slightly more predictable over time than under Score Fusion.
Initial performance levels, indicated by a = 23.9 for Score Fusion
and a = 14.1 for Naive Correction, show that participants start off
better with Score Fusion. However, the rate of learning, represented
by b, is faster in Naive Correction (b = 0.115) than in Score Fusion
(b = 0.069), despite the higher initial performance in the latter. The
more predictable learning effect, and the higher learning rate might
be caused by participants’ adaptation to the Naive Correction frame-
work, whereas Score Fusion offers accurate predictions, eliminating
the need for user adaptation.

5.2 Subjective Ratings & Feedback
• System Usability Score: The overall System Usability Scale (SUS)

score for the gesture typing system is 83. This indicates that users
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Fig. 12: Violin plots of answers to subjective rating questions scored on
5-point Likert scales. The 5-point Likert scales ranged from 1 (strongly
disagree) to 5 (strongly agree).

found the system to be highly usable. A score above 68 is considered
above average, and anything above 80 is an indication of excellent
usability. In this context, a score of 83 suggests that the gesture
typing system was not only easy to use but also met or exceeded
the expectations of most users in terms of efficiency and satisfaction.
This score aligns with the ratings of the six aspects, suggesting that
the gesture typing method is easy to learn and efficient to use.

• Ratings of Six Aspects: The post-study questionnaire used a Likert
scale to assess six aspects, as illustrated in Figure 12. Participants
generally found gesture typing moderately easy, with an interquartile
range (IQR) from 3 to 4, suggesting a moderate consensus among
them. The IQR for ease of learning is narrow, centered on a score of
4, implying minimal variance and indicating that participants found
the method easy to learn. The distribution of ratings on perceived
speed is broader, indicating greater variability in how participants
perceive the speed of gesture typing. The majority of users perceived
gesture typing as a relatively quick input method, which aligns with
our previously discussed quantitative results. Perceived accuracy has
a distribution similar to that of perceived speed, with few participants
rating as having low accuracy. This suggests a contribution from the
intelligent text entry framework, Score Fusion, in providing accurate
text entry predictions. Additionally, many reported minimal hand
fatigue, suggesting that the ring-based gesture typing may offer an
ergonomic advantage. The plot also indicates that participants had
neutral feelings regarding eye fatigue.

• Feedback for Improvement: While we received many positive com-
ments and overall feedback sentiment, we also recognize areas for
improvement. Several participants highlighted the need for refine-
ment. Specifically, Participant 3 shared, ‘I had to concentrate to
keep my middle finger out of the way,’ due to the system’s method of
detecting a pinch gesture, which essentially requires connecting the
thumb and index finger to form a closed loop. If the middle finger
inadvertently touches the index finger and the sensor signal change
surpasses the threshold, the system mistakenly registers this as a
pinch gesture, leading to inaccuracies. However, such incidents were
infrequent, observed only on rare occasions with Participant 3 and
Participant 8.

5.3 Ablation Analysis of Score Fusion Components
To understand the contribution from each component in the Score
Fusion framework, we performed an ablation analysis on the logged
word-trajectory from the Study 2. The results are summarized in Table 4.
These results underscore the significance of each component, as each
addition led to substantial improvements in accuracy.

6 DISCUSSION

In this paper, we have presented RingGesture, a novel ring-based text
entry system for lightweight AR glasses. RingGesture incorporates
an intuitive ring-based mid-air pointing and selection technique that

Components Character Error Rate
GDM 27.86% ± 4.35%
GDM + SSCM 12.12% ± 3.67%
GDM + SSCM + CLM 5.56% ± 1.33%

Table 4: Ablation analysis of Score Fusion’s components using the
dataset logged from Study 2, with outcomes reported as Character Er-
ror Rate (CER). Components include GDM (Gesture Decoding Model),
SSCM (Spatial Spelling Correction Model), and CLM (Contextual Lan-
guage Model).

allows users to perform mid-air gesture typing. It also introduces a deep
learning word prediction framework, Score Fusion, that significantly
enhances text entry accuracy and speed. Through two studies, we have
demonstrated the effectiveness and usability of RingGesture. Study
1 revealed that word-level gesture typing was preferred by users over
phrase-level gesture typing. Study 2 demonstrated that RingGesture,
particularly when utilized with the Score Fusion framework, facilitates
efficient one-handed text entry, achieving text entry rate of 27.3 WPM.
This performance is comparable to mobile phone gesture typing, which
also averages around 30 WPM [57], despite the challenges posed by
noise and drift in IMU tracking. When using the conventional word
prediction framework Naive Correction, the average text entry rate
for RingGesture drops to 17.6 WPM. The enhanced performance with
RingGesture and Score Fusion is due to Score Fusion’s accurate word
prediction ability, which effectively compensates for the tracking limi-
tations and maintains high performance. The longitudinal evaluation
also indicated that users can quickly learn and improve their proficiency
with the system over time.

7 LIMITATIONS AND FUTURE WORK

Our system is specifically designed for text entry on lightweight AR
glasses equipped with MicroLED technology. A lightweight AR glass
creates a virtual screen at a specific distance in front of the user, offering
only 3DOF experience. Viewing a traditional monitor, which is placed
directly in front of the user and has a fixed screen position, closely
mimics the experience of wearing these AR glasses. Additionally, the
current iteration of lightweight AR glasses faces battery life limitations,
posing challenges for conducting extended user studies. This similarity
in the viewing experience supports the argument that using a monitor
as a proxy in user studies can effectively replicate the visual setup of
these AR glasses. The use of monitors for conducting text entry studies
on time-machine heads-up displays has been implemented in several
studies [26, 45]. However, we acknowledge that this assumption holds
true primarily in controlled lab settings and may not extend to real-
world scenarios, especially when the user is in motion. Therefore, we
plan to assess the RingGesture system in real-life, once lightweight AR
glasses are enhanced with longer battery life and become more readily
usable, as part of our follow-up work. This will involve assessing
the performance of the RingGesture system in actual AR experiences,
particularly in “in the wild” settings such as typing while walking, in a
car, or lying on a bed.

The Score Fusion framework has the potential to be applied to other
decoding methods beyond gesture typing, such as touch typing decod-
ing. Its ability to integrate multiple probabilistic models to enhance
word prediction accuracy could benefit various text entry systems.
While we did not test Score Fusion with other text entry techniques, we
consider this an avenue for future work.

8 CONCLUSION

RingGesture presents a novel ring-based mid-air gesture typing system
for lightweight AR glasses, leveraging an intuitive pointing and selec-
tion technique. The deep learning word prediction framework, Score
Fusion, significantly enhances text entry accuracy and speed. User
studies demonstrate RingGesture’s effectiveness and usability, with
entry rates approaching 30 WPM, outperforming previous one-handed
text entry techniques for AR/VR. Thus, RingGesture demonstrates sig-
nificant potential for enabling fast text entry in lightweight AR glasses.
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